

FINAL GEOTECHNICAL DATA REPORT COLLIER RAW WATER PUMP STATION AND TUNNEL CITY OF BEAUMONT BEAUMONT, TEXAS

Prepared for:

Freese and Nichols, Inc. 11200 Broadway Street, Suite 2320 Pearland, Texas 77584

Prepared by:

Tolunay-Wong Engineers, Inc. 2455 West Cardinal Drive, Suite A Beaumont, Texas 77705

July 22, 2021

TWE Project No. 21.23.014 / Report No. 120334

Geotechnical Engineering Construction Materials Testing Geophysical Services Deep Foundations Testing Environmental Field Services

www.tweinc.com 1-888-887-9932

July 22, 2021

Freese and Nichols

11200 Broadway Street, Suite 2320 Pearland, Texas 77584

Attn: Mr. Somnath Chilukuri, P.E.

Somnath.Chilukuri@freese.com

Ref: Final Geotechnical Data Report

Collier Raw Water Pump Station and Tunnel

City of Beaumont Beaumont, Texas

TWE Project No. 21.23.014 / Report No. 120334

Dear Mr. Chilukuri,

Tolunay-Wong Engineers, Inc. (TWE) is pleased to submit this final geotechnical data report of our geotechnical investigations performed for the referenced project. This final report contains a detailed description of the field and laboratory work performed for this study, test boring logs with tabulated field and laboratory test results, individual laboratory test reports and electrical resistivity survey data.

We appreciate the opportunity to provide this final factual report for this project. If you have any questions regarding this factual report or if we can be of further assistance, please contact us.

Sincerely,

TOLUNAY-WONG ENGINEERS, INC.

TBPELS Firm Registration Number F-000124

Mariam Abedelwahab, E.I.T.

Ase S

Staff Geotechnical Engineer

MA/TGH/ma

Tyler G. Henneke, P.E.

Vice President

TABLE OF CONTENTS

1 2	INTRODUCTION AND PROJECT DESCRIPTION 1.1 Introduction 1.2 Project Description PURPOSE AND SCOPE OF SERVICES	1-1 1-1 1-1 2-1
3	FIELD PROGRAM 3.1 Test Borings 3.2 Standpipe Piezometers and Slug Testing 3.3 Field Electrical Resistivity Surveys	3-1 3-2 3-3 3-3
4	 LABORATORY SERVICES 4.1 General 4.2 Analytical Test Results 4.3 Thermal Conductivity 4.4 One-Dimensional Swell 4.5 Sieve Analysis with Hydrometer 4.6 Soil Abrasivity 	4-1 4-1 4-1 4-2 4-2 4-3 4-3
5	 PROJECT SITE CONDITIONS 5.1 Subsurface Soil Stratigraphy 5.2 Groundwater Observations 5.3 Apparent Soil Resistivity 	5-1 5-1 5-1 5-2
6	LIMITATIONS 6.1 Limitations	6-1 6-1

i

TABLES AND APPENDICES

TABLES		
Table 3-1: Fie	eld Program Summary	4-1
Table 4-1: Ge	otechnical Laboratory Testing Program	4-1
Table 4-2: An	alytical Laboratory Testing Program	4-1
Table 4-3: Sur	mmary of Analytical Laboratory Test Results	4-2
Table 4-4: Sur	mmary of Thermal Conductivity Test Results	4-2
Table 4-5: Sur	mmary of One-Dimensional Swell Test Results	4-2
Table 4-6: Sur	mmary of Sieve Analysis Test Results	4-3
Table 4-7: So	il Abrasivity Test Value Reference Classification Chart	4-3
Table 4-8: Sur	mmary of Soil Abrasivity Test Results	4-3
Table 5-1: Gre	oundwater Level Measurements	5-2
Table 5-2: Sta	andpipe Piezometer Readings	5-2
APPENDIC	CES	
Appendix A:	FNI Redacted Project Exhibits	
Appendix B:	TWE Field Program Location Plans	
Appendix C:	gINT Test Borings Log and Key to Terms and Symbols	
Appendix D:	FNI Standpipe Piezometer Installation	
Appendix E:	Laboratory Test Reports	
Appendix F:	Electrical Resistivity Survey Results	
Appendix G:	Subsurface Cross-Sectional Profiles	
Appendix H:	Slug Test Reports	

1 INTRODUCTION AND PROJECT DESCRIPTION

1.1 Introduction

This report presents the results of our geotechnical investigations performed for the Collier Raw Water Pump Station and Tunnel in Beaumont, Texas. Our scope was performed in general accordance with TWE Proposal No. P21-015 (Revision 1) dated January 14, 2021 and authorized by issuance of Freese and Nichols, Inc. Subconsultant Authorization dated January 20, 2021.

1.2 Project Description

The project includes various components associated with the City of Beaumont Flood Improvement Project. We understand the components are associated with final design of the proposed Collier Raw Water Pump Station (RWPS) and an influent tunnel connection to the existing Lawson Pump Station facility. Redacted project information, as provided by the Client (FNI) in a Preliminary Geotechnical Investigation Plan document, is presented in Appendix A of this report.

2 PURPOSE AND SCOPE OF SERVICES

The purposes of our factual geotechnical investigations were to investigate the subsurface soil and groundwater conditions within the project alignment and to provide our Client factual geotechnical information for use as the basis of their design and construction assessments. Our scope of services included:

- 1. Conducting thirteen (13) test borings (TBs), installing three (3) temporary standpipe piezometers (PZs) with associated slug testing and performing seven (7) electrical resistivity surveys (ERSs) to evaluate subsurface stratigraphy, groundwater conditions and apparent electrical resistivity within the project alignment;
- 2. Performing geotechnical laboratory tests on recovered soil samples from the test borings to evaluate the physical and engineering properties of the strata encountered; and,
- 3. Providing gINT boring logs compiled from the field and laboratory data as well as individual laboratory test reports.

Our scope of services did not include development of geotechnical design parameters, engineering analyses or any environmental assessments for the presence or absence of wetlands or of hazardous or toxic materials within or on the soil, air or water within the project alignment. Any statements in this report or on the boring logs regarding odors, colors, unusual items and conditions are strictly for the information of the Client. A geological fault study, geophysical explorations and development of geotechnical design and construction recommendations were also beyond our factual scope.

3 FIELD PROGRAM

TWE conducted explorations of subsurface soil and groundwater conditions within the project alignment from February 8, 2021 to March 11, 2021. The scope of the field program included drilling, logging, sampling and backfilling thirteen (13) test borings (TBs), installing three (3) temporary standpipe piezometers (PZs) with associated slug testing and performing seven (7) electrical resistivity surveys (ERSs). Our geotechnical field program performed for the project is outlined in Table 1 below and illustrated on TWE Drawing Nos. 21.23.014-1 through 21.23.014-3 in Appendix B.

Table 3-1: Field Program Summary								
Location	Description	TB Name	TB Depth (ft)	PZ Name	PZ Depth (ft)	ERS Name		
1	Lawson PS Shaft	TB-1	40	-	-	ERS-1		
2	Lawson PS Site	TB-2	40	PZ-2	40	-		
3	Tunnel Sta. 5+00	TB-3	30	-	-	ERS-3		
4	Tunnel Sta. 8+00	TB-4	30	-	-	-		
5	Tunnel Sta. 11+00	TB-5	30	-	-	ERS-5		
6	Tunnel	TB-6	35	-	-	-		
7	Intermediate Shaft Sta. 13+76	TB-7	35	PZ-7	35	ERS-7		
8	Tunnel Sta. 17+00	TB-8	30	-	-	ERS-8		
9	Tunnel Sta. 20+00	TB-9	30	-	ı	-		
10	Tunnel Sta. 23+00	TB-10	30	-	ı	ERS-10		
11	Collier RWPS Shaft	TB-11	50	-	-	ERS-11		
12	Collier RWPS Site	TB-12	50	-	-	-		
13	Collier RWPS Site	TB-13	50	PZ-13	50	-		
To	Total TB Count 13							
Total TB Footage (ft) 480								
	Total PZ Count 3							
Total PZ Footage (ft) 125								
Total ERS Count						7		

On February 12, 2021, TWE performed boring TB-1 located within the Lawson Pump Station facility. An unknown obstruction was encountered at 28-ft below grade and the boring was terminated. We did not direct our Driller to attempt to advance the borehole since we were unsure of what the obstruction entailed (active or abandoned pipeline or utility that wasn't picked up on the One Call, buried debris, tree stump, etc.). Mud rotary drilling techniques at that depth also made it difficult to provide any context as to what the obstruction may have been.

The Client was notified to provide further instructions for an offset location. On March 2, 2021, TB-1 was offset approximately 10-ft south and 8-ft east from the original location. The boring was shotholed to 28-ft and sampling reconvened from 28-ft below grade to the boring completion depth of 40-ft below grade.

3.1 Test Borings

3.1.1 Drilling Methods

The test borings were performed in general accordance with the Standard Practice for Soil Investigation and Sampling by Auger Borings (ASTM D1452). The test borings were performed using conventional highland buggy-mounted drilling equipment and advanced using dry-auger drilling methods until groundwater was encountered. At that point, the borings were completed using wash-rotary drilling techniques. Samples were obtained continuously on 2-ft intervals to a depth of 30-ft below existing grade and at 5-ft depth intervals thereafter to the boring completion depths. Upon drilling and sampling completion the boring was backfilled with cement-bentonite grout.

3.1.2 Soil Sampling

Fine-grained, cohesive soils and semi-cohesionless soils thought to be cohesive during drilling were recovered from the test boring by hydraulically pushing a 3-in diameter, thin-walled tube a distance of 24-in. The field sampling procedures were conducted in general accordance with the Standard Practice for Thin-Walled Tube Sampling of Soils (ASTM D1587). Our Geotechnician visually classified the recovered soils and obtained field strength measurements of the recovered soils using a calibrated pocket penetrometer and/or hand torvane device. The tube samples were extruded in the field, wrapped in foil, placed in moisture-sealed plastic bags and protected from disturbance prior to transport to the laboratory. The recovered soil sample depths and field strength measurements are shown on the project boring logs in Appendix C.

Cohesive soils thought to be coarse-grained during drilling, as well as cohesionless and semi-cohesionless coarse-grained soils, were collected with the Standard Penetration Test (SPT) sampler driven 18-in by blows from a 140-lb hammer falling 30-in in accordance with the Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils (ASTM D1586). The number of blows required to advance the sampler three (3) consecutive 6-in depths are recorded for each corresponding sample on the boring logs in Appendix C. The N-value, in blows per foot, is obtained from SPTs by adding the last two (2) blow count numbers. The consistency of cohesive soils and the relative density of cohesionless and semi-cohesionless soils can be inferred from the N-value. The samples obtained from the split-barrel sampler were visually classified, placed in moisture-sealed plastic bags and transported to our laboratory. SPT sampling intervals and blow counts are presented on the project boring logs in Appendix C.

3.1.3 Boring Logs

Our interpretations of general subsurface soil and groundwater conditions at the boring locations are included on the gINT project boring logs in Appendix C. The interpretations of the soil types throughout the boring depths and the locations of strata changes were based on visual classifications during field sampling and laboratory testing using the Standard Practice for

Classification of Soils for Engineering Purposes (Unified Soil Classification System) [ASTM D2487] and the Standard Practice for Description and Identification of Soils (Visual-Manual Procedure) [ASTM D2488]. A key to the symbols and terms used on boring logs is also included in Appendix C.

3.1.4 Groundwater Measurements

Groundwater level measurements were attempted in the open boreholes during dry-auger drilling. Measurements were taken initially during dry-auger drilling when groundwater was first encountered and at 5-min intervals thereafter over a 15-min time period. The groundwater measurements observed within the soil borings are described in Section 5.2 of this report.

3.2 Standpipe Piezometers and Slug Testing

Three (3) temporary standpipe piezometers (PZs) were installed within dry-augered boreholes adjacent to TB locations TB-2, TB-7 and TB-13 to depths of 40-ft, 35-ft and 50-ft below existing grade, respectively. The PZS were installed per the instructions provided by FNI as presented in Appendix D of this report.

The PZs included a 2-in diameter polyvinyl chloride (PVC) well screen section and riser casing. The piezometers also included a bottom cap, an air-vented top plug cap, one (1) 10-ft long section of screen pipe with 0.010-in slots and long sections of blank riser pipes at lengths specified by the Client. A grout backfill and 20/40 sand filter media were also installed according to the PZ specifications provided by the Client as shown in Appendix D of this report.

Water was bailed out of each PZ one (1) week after the piezometer installation with slug tests performed one (1) week after bailing of water. The slug tests, which provide field data to estimate the coefficient of hydraulic conductivity, K, were performed by rapidly displacing a "slug" while measuring the water level changes with a submersible pressure transducer and recording water levels with a data logger. Three (3) sets of falling (slug-in) and rising (slug-out) head tests were performed at each PZ location. Slug test reports presenting temperature, water level depth and pressure over time are provided in Appendix H. Raw slug testing data was also submitted to the Client under separate cover.

Approximately two (2) weeks after slug testing, our Geotechnician recorded initial groundwater readings of each PZ. We are also obtaining long-term readings on a monthly basis through June 2021 for a total of four (4) sets of PZ readings conducted for this scope of work. The PZs will be left in place and will be plugged by Others at a later date. Groundwater readings observed within the piezometers to-date are included in Section 5.2 of this report.

3.3 Field Electrical Resistivity Surveys

Resistivity soundings were performed at seven (7) locations as shown on the field program location plans provided in Appendix B. The surveys were performed in general accordance with the Standard Test Method for Field Measurement of Soil Resistivity using the Wenner Four-Electrode Method (ASTM G57) using a Stinger Electrical Resistivity Meter, stainless steel probes and low-impedance wire. The Wenner four-electrode method requires that four (4) metal electrodes be

placed with equal separation in a straight line in the surface of the soil to a depth not exceeding 5% of the minimum separation of the electrodes.

The center point of the surveys was conducted for a set of perpendicular resistivity lines as shown in the field program location plan provided in Appendix B. For each line, readings were taken using specific "a" spacing increments of 2.5-ft, 5-ft, 10-ft, 20-ft, 30-ft and 50-ft (when feasible).

The Stinger Electrical Resistivity Meter is a digital-memory earth electrical resistivity meter which measures self-potential differences of earth materials to controlled current flow by means of ionic conductance. The testing procedure involves a current being introduced into the earth obtained from Ohm's Law by measuring the potential drop between two (2) electrodes that are positioned within the field of the current electrodes. For a given current flow, the potential drop across the surface will vary with and be proportional to the resistance of the material to current flow. The reports of electrical resistivity data are presented in Appendix F and results are discussed in Section 5.3.

4 LABORATORY SERVICES

4.1 General

Laboratory tests were assigned by FNI on selected soil samples to measure physical, engineering and analytical properties of the soil samples recovered from the test borings. The types and brief descriptions of the geotechnical and analytical laboratory tests performed are presented in Tables 4-1 and 4-2, respectively.

Table 4-1: Geotechnical Laboratory Testing Program					
Test Description	Test Method				
Sieve Analysis with Hydrometer	ASTM D422				
Amount of Material in Soils Finer than No. 200 Sieve	ASTM D1140				
Water (Moisture) Content	ASTM D2216				
Unconsolidated-Undrained Triaxial Compression	ASTM D2850				
Liquid Limit, Plastic Limit and Plasticity Index	ASTM D4318				
Thermal Conductivity	ASTM D5334				
One-Dimensional Swell	ASTM D4546				
Density (Unit Weight)	ASTM D7263				
Soil Abrasivity Test					

Table 4-2: Analytical Laboratory Testing Program					
Test Description Test Method					
Water-Soluble Sulfates	ASTM C1580				
Water-Soluble Chlorides	ASTM D512				
pH of Soil	ASTM G51				

Standard geotechnical laboratory test results are presented on the test boring logs in Appendix C. Analytical test results are presented in Appendix E. The results of thermal conductivity, one-dimensional swell, sieve analyses and soil abrasivity are provided in the sections below and also presented in Appendix E.

4.2 Analytical Test Results

Samples were selected by FNI to perform analytical testing that included pH, water-soluble sulfates and water-soluble chlorides in soils per ASTM G51, ASTM C1580 and ASTM D512, respectively. The results are summarized in Table 4-3 on the following page and provided in Appendix E of the report.

Table 4-3: Summary of Analytical Laboratory Test Results						
Boring	Depth (ft)	Soil Type	рН	Sulfate Content (mg SO₄/kg)	Chloride Content (mg/kg)	
TB-1	2.0 - 4.0	SC	8.34	500	120	
TB-4	4.5 - 6.0	СН	6.16	500	90	
TB-6	4.0 - 6.0	СН	9.75	900	240	
TB-9	2.0 - 4.0	СН	4.42	600	270	
TB-11	0.0 - 2.0	СН	7.16	3,300	150	
TD 12	2.0 - 4.0	СН	5.66	600	60	
TB-12	4.0 - 6.0	SC	8.69	500	60	

4.3 Thermal Conductivity

Samples were selected by FNI to perform thermal conductivity tests in accordance with ASTM D5334. The results are summarized in Table 4-4 below with detailed reports provided in Appendix E.

Table 4-4: Summary of Thermal Conductivity Test Results							
Boring	Depth (ft)	Soil Type	Thermal Conductivity (W/m-K)				
TB-1	6.0 - 8.0	SC	2.22				
TB-5	4.0 - 6.0	CL	1.42				
TB-8	2.0 - 4.0	CL	1.67				
TB-13	4.0 - 6.0	CL	1.96				

4.4 One-Dimensional Swell

Samples were selected by FNI to perform one-dimensional swell tests in accordance with ASTM D4546 - Test Method B. This test method measures the magnitude of one-dimensional wetting-induced swell or collapse deformation of intact soil specimens. The results are summarized in Table 4-5 below with detailed reports provided in Appendix E.

Table 4-5: Summary of One-Dimensional Swell Test Results								
Boring Depth (ft) Soil Type % Swell								
TB-1	2.0 - 4.0	SC	0.1					
TB-2	4.0 - 6.0	SC	0.1					
TB-6	4.0 - 6.0	СН	0.0					
TB-9	2.0 - 4.0	СН	0.5					
TB-11	6.0 - 8.0	CL	1.2					

4.5 Sieve Analysis with Hydrometer

Samples were selected by FNI to perform sieve analysis with hydrometer tests in accordance with ASTM D422. This test method determines the distribution of particle sizes in soils retained on the No. 200 sieve. The results are summarized in Table 4-6 below with detailed test reports provided in Appendix E.

	Table 4-6: Summary of Sieve Analysis Test Results								
Poring	Donth	Sail Type	% Gr	avel	vel % Sand		% Fines		
Boring Dept	Depth	Soil Type	Coarse	se Fine Coarse Medium Fine	Silt	Clay			
TB-1	12.0 - 14.0	SC		1	0.8	0.0	50.1	28.7	20.4
TB-3	6.0 - 8.0	СН			0.0	0.0	16.2	45.4	38.4
TB-6	8.0 - 10.0	SC			0.0	0.0	55.8	26.4	17.8
TB-9	4.0 - 6.0	СН			0.0	0.3	18.9	35.5	45.3
TB-11	16.0 - 18.0	СН		1	0.0	0.0	3.2	66.4	30.4
TB-12	2.0 - 4.0	СН		1	0.0	0.0	6.2	44.5	49.3

4.6 Soil Abrasivity

Samples were selected by FNI to perform soil abrasion testing. Table 4-7 provides the soil abrasivity test classification chart below. The results are summarized in Table 4-8 below with a detailed tests report provided in Appendix E.

Table 4-7: Soil Abrasivity Test Value Reference Classification Chart				
Category Soil Abrasivity Test value (mg)				
Low	≤ 7.0			
Medium	7.1 - 21.9			
High	≥ 22.0			

Table 4-8: Summary of Soil Abrasivity Test Results						
Test No.						
Boring	Depth	1	2	Average		
TB-5	8.5-10	31.1	30.7	30.9		
	10.5-12	43.1	42.1	42.6		

5 PROJECT SITE CONDITIONS

Our interpretations of soil and groundwater conditions within the project alignment are based on information obtained at the location of the test borings performed for this project. This information has been used as the basis for our conclusions presented in this report. Subsurface conditions could vary at areas not explored by the project borings. Significant variations at areas within the project alignments not explored by the soil borings could require reassessment of our conclusions or supplemental investigations as deemed necessary by FNI.

5.1 Subsurface Soil Stratigraphy

The generalized subsurface profiles encountered within the project alignment were interpreted from the soil borings presented in Appendix C and the cross-sections in Appendix F.

The generalized subsurface profile encountered within the Lawson Pump Station site (TB-1 and TB-2) included 8-in of fill soils consisting of crushed aggregate underlain by loose sand (SC) to a depth of 20-ft below existing ground surface. Medium dense to very dense sand (SP/SP-SM) was encountered from 20-ft below existing ground surface to the boring completion depths of 40-ft.

The generalized subsurface profile encountered along the Tunnel Alignment (TB-3 to TB-10) consisted of intermittent and alternating layers of very soft to hard clay soils (CH/CL) and very loose to medium dense sand soils (SC/SP/SP-SM). A layer of organic clay soils (OH) was encountered within TB-4 from 18-ft to 24-ft below existing ground surface.

The generalized subsurface profile encountered within the Collier Raw Water Pump Station site (TB-11 to TB-13) consisted of stiff to hard clay soils (CH/CL) from existing grade to 8-ft underlain by medium dense sand (SC) to a depth of 14-ft below existing grade. Stiff to hard clay soils (CH/CL) were encountered from 14-ft to the boring completion depths of 50-ft.

Details of the soil conditions encountered in the test borings can be found on the corresponding logs of borings presented in Appendix C. Subsurface cross-sectional profiles for the pump station sites and tunnel alignment are provided in Appendix G of this report.

5.2 Groundwater Observations

Groundwater level measurements were attempted in the open boreholes when groundwater was first encountered during dry-auger drilling and at 5-min intervals over a 15-min time period. Groundwater measurements obtained from the test borings are summarized in Table 5-1 on the following page. Our PZ groundwater level readings to date are also summarized in Table 5-2 on the following page.

	Table 5-1: Groundwater Level Measurements							
Test Boring	Free Water Depth During Dry-Auger Drilling (ft)	15-min Static Water Depth (ft)	15-min Total Borehole Depth (ft)					
TB-1	20.0	13.5						
TB-2	20.0	13.7	16.4					
TB-3	4.0	0.67	2.5					
TB-4	6.0	2.7	5.0					
TB-5	10.0	3.2	6.0					
TB-6	12.0	6.0	8.5					
TB-7	10.0	4.6	6.8					
TB-8	10.0	4.2	5.2					
TB-9		NA ⁽¹⁾						
TB-10	10.0	5.0	6.0					
TB-11	12.0	10.8	12.0					
TB-12	12.0	10.0	11.5					
TB-13	12.0	10.4	11.3					

Notes: (1) Perched water at 2-ft below grade precluded free and static water level readings.

	Table 5-2: Standpipe Piezometer Readings														
D :		I 4 - II - 4'	G	roundwat	er Depth I	below Exi	sting Grad	de							
Piezometer No.	Installation Depth (ft)	Installation Date		4	2021 Read	ding Dates	5								
1101	Doptii (it)	Date	3/15	3/24	4/26	6/8	6/30	7/21							
PZ-2	40	02/12/2021	11.3-ft	-	11.2-ft	9.1-ft	10.5-ft	10.8							
PZ-7	35	02/24/2021		2.8-ft	2.8-ft	0.7-ft	1.9-ft	5.0							
PZ-13	50	02/23/2021		10.8-ft	11.2-ft	10.3-ft	10.8-ft	10.7							

Groundwater levels at the project site could fluctuate with climatic and seasonal variations and should be verified before construction.

5.3 Apparent Soil Resistivity

The conversion of resistance, R, (ohms) to apparent resistivity is dependent upon the position and spacing of the potential electrodes (P_1 and P_2) relative to the current electrodes (C_1 and C_2). Apparent resistivity (ρ) is generally defined as $\rho = V$ (voltage) / I (current). The Wenner four-electrode method resistivity calculation uses the equation $\rho = 2\pi aR$ where "a" represents the equal electrode spacing essential to the Wenner array. C_1 to P_1 is equal to P_2 to P_2 which is equal to P_2 to P_2 which is equal to P_2 to P_2 which is equal to P_2 to P_3 which is equal to P_3 to P_4 is expressed as ohm-ft or ohm-m. The "a" spacing determines the depths of investigation. Locations of ERSs are shown on the drawings included in Appendix B. The processed resistivity data from the ERSs are presented in Appendix F.

6 LIMITATIONS

6.1 Limitations

This final factual report has been prepared for the exclusive use of Freese and Nichols, Inc. and their project team for specific application to Collier Raw Water Pump Station and Tunnel in Beaumont, Texas. This report has been prepared in accordance with generally accepted geotechnical engineering practices common to the local area. No other warranty, expressed or implied, is made.

The information contained in this final geotechnical data report is based on data obtained from the subsurface explorations performed by TWE within the project alignment. TWE is not responsible for any claims, damages or liability associated with interpretation or reuse of the information contained in this factual report without expressed written authorization.

APPENDIX A

FNI REDACTED PROJECT EXHIBITS

PRELIMINARY GEOTECHNICAL INVESTIGATION PLAN

Collier RWPS and Tunnel

Prepared for:

City of Beaumont

December 1, 2020

Prepared by:

FREESE AND NICHOLS, INC. 11200 Broadway St Suite 2320, Pearland, TX 7758 806-686-2700

	N	
0	100'	200'
	SCALE IN FEET HORIZONTAL	
0	10'	20'
	SCALE IN FEET VERTICAL	
TRACTO	OR SHALL VERIFY	

FREESE

Station

Pump

Raw

Col

SEQ.

	BORING	TABLE	
BORING NO.	NORTHING	EASTING	POINT DESCRIPTION
TB-10	13991255.51	3518626.47	BORE
TB-11	13991348.52	3518243.64	BORE
TB-13	13991347.23	3518221.18	BORE

POINT

DESCRIPTION

BORE

BORE

BORE

BORE

BORE

BORE

EASTING

3520643.43

NORTHING

13990826.07

13990832.65 | 3520293.41

13990828.00 | 3519993.45

13990823.36 | 3519693.48

13990807.07 | 3519417.09

BORING NO.

TB-1

TB-3

TB-4

TB-5

TB-6

TB-8

TB-2 13990847.47 3520650.37 PEIZOMETER TB-3 13990832.65 3520293.41 BORE TB-4 13990828.00 3519993.45 BORE TB-5 13990823.36 3519693.48 BORE TB-6 13990807.07 3519417.09 BORE TB-7 13990829.07 3519416.75 PEIZOMETER TB-8 13990953.46 3519128.48 BORE TB-9 13991079.15 3518856.08 BORE TB-10 13991204.84 3518583.68 BORE TB-11 13991348.52 3518243.64 BORE 13991404.09 3518279.63 | PEIZOMETER TB-13 13991404.06 3518214.91 BORE

Colliers Raw Water Pump Station

PLAN

SITE

TB-13

13991347.23 | 3518221.18

BORE

SITE

30% SUBMITTAL

.D Rel: 24.0s (LMS Tech) name: N:\WTU\Report\SITE-BORE-LOCA (GRID).d :Saved: 12/1/2020 10:04 AM Saved By: 02139

Plot Date: 12/1/2020 10:06 AM Plot By: 02139 Filename: N:\WTU\Report\SITE-BORE-LOCA (GRID).dwg

APPENDIX B

FIELD PROGRAM LOCATION PLANS

APPENDIX C
GINT BORING LOGS AND KEY TO TERMS AND SYMBOLS
Project No. 21.23.01

						LOG OF BORII											
PRO:	JEC	Т:	C B	ollie eau	er Raw mont,			: Fr	eese earla	e and	d Nic Texa	hols s	, Inc.				
ELEVATION (FT)	DEPTH (FT)	SAMPLE TYPE	SYMBOL	SAMPLE NUMBER	SAMPLE RECOVERY (FIELD %/LAB %)	GPS COORDINATE: 30.129417 deg 94.088722 deg STATE PLANE COORD: N E SURFACE ELEVATION: +13 ft DRILLING METHOD: Dry Aug.: 0' to 20' Wash Bored: 20' to MATERIAL DESCRIPTION	(P) POCKET PEN (tsf) (T) TORVANE (tsf)	STD. PENETRATION TEST BLOWCOUNT	MOISTURE CONTENT (%)	DRY UNIT WEIGHT (pdf)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	SHEAR STRENGTH FIELD TEST, Su (ksf)	SHEAR STRENGTH LAB TEST, Su (ksf)	OTHER TESTS PERFORMED
+	-0		XX			Fill: CRUSHED AGGREGATE (8")			16								
10	_ _ _					Gray and tan CLAYEY SAND (SC)	(P)1.75		18								AN, SW
	- 5						(P)2.00		18	115	34	17	38				
	- -					-gray and brown from 6' to 12'	(P)1.50		18	112						(C)1.12	тс
5—	_						(P)1.25		21								
	— 10 –						(T)0.55		20	110	36	23	48			(U)1.51	
0	_				∑	-gray with organics from 12' to 18'	(T)0.45		20				49				SA
	- 15 						(P)1.50		18	400		40	40			(1) 4 00	
-5	- - -					-becomes gray and brown at 18'	(P)1.50 (T)0.40		18	109	29	16	40			(U)1.33	
	20 	X				Medium dense, gray and brown POORLY GRADED SAND with SILT (SP-SM)		4/6" 4/6" 8/6"	27				6				
-10	- -	X				-becomes gray with organics at 22.5'		5/6" 9/6" 15/6"	23								
	25 	X	1 					8/6" 11/6" 15/6"	23								
-15	-	X				Medium dense gray POORLY GRADED SAND (SP)		11/6" 13/6" 15/6"	26				3				
+	- -30 -	X						9/6" 11/6" 13/6"	21								
-20	- - - 35	X						7/6" 10/6" 12/6"	21								
-25	- - -					Medium dense gray POORLY GRADED		6/6"	19				6				
	- -40	X				SAND with SILT (SP-SM) Bottom @ 40 ft.		7/6" 9/6"					-				
COMP DATE DATE LOGG PROJI	BOR BOR ER:	ING ING	ST	ART		40 ft NOTES: Free water = 2 backfilled with 3-2-21 SW: Swell Tes Weight of Han encountered a Tolunay-Wong	cement-l st. SA: Sie nmer. C: l t 28-ft. TI	enton eve An Uncon B-1 wa	ite gro alysis. fined (s offse	ut. TC U: Ui Compi et, sho	: Then nconso ression	mal Co lidateo . An u	onduct d-Undi nknow	ivity. <i>A</i> ained. n obst	N: Anal WOH: ruction	ytical Test was	ing.

Engineers, Inc.-

DRO	IEC.	т. ,	<u> </u>	امزال	r Paw	LOG OF BORII Water Pump Station and Tunnel (d Nia	hala	Inc				
FROC	LC		Be	aur	nont,	Texas					Texa		, INC.				
ELEVATION (FT)	DEPTH (FT)	SAMPLE TYPE	STMBOL	SAMPLE NUMBER	SAMPLE RECOVERY (FIELD %/LAB %)	GPS COORDINATE: 30.129500 deg 94.088694 deg STATE PLANE COORD: N E SURFACE ELEVATION: +13 ft DRILLING METHOD: Dry Aug.: 0' to 20' Wash Bored: 20' to MATERIAL DESCRIPTION	(P) POCKET PEN (tsf) (T) TORVANE (tsf)	STD. PENETRATION TEST BLOWCOUNT	MOISTURE CONTENT (%)	DRY UNIT WEIGHT (pcf)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	SHEAR STRENGTH FIELD TEST, Su (ksf)	SHEAR STRENGTH LAB TEST, Su (ksf)	OTHER TESTS PERFORMED
+	-0	Į.				Fill: CRUSHED AGGREGATE (8")			16								
10—						Gray and brown CLAYEY SAND (SC)	(P)1.50		19								
+	-5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					(P)1.75		17		31	15	38				sw
5—		/, / /,				-with organics from 6' to 8'	(P)1.50		19	107							
	- - 10	/ / /					(P)1.50 (P)1.50		19		26	9	34				
		, , , ,					(T)0.45		20								
	- - 15	, , ,			Ā		(P)1.50		22	107	31	13	46			(U)0.82	
-5	-					-no recovery from 16.5' to 18' -loose from 16.5' to 20'		3/6" 3/6" 4/6"									
	- -20 -						(T)0.40	2/6" 3/6" 3/6"	20 25	101			42				
-10	-					Medium dense gray POORLY GRADED SAND with SILT (SP-SM)		3/6" 7/6" 9/6"	24								
	- 25	X				-dense from 24.5' to 26.5'		12/6" 14/6" 26/6"	20				9				
-15						-becomes very dense at 26.5'		20/6" 53/6" 27/3"	26								
	- 30 -	X						32/6" 24/6"	22								
-20	- -35					Very dense gray POORLY GRADED SAND (SP)		27/6" 63/6" 	18				4.5				
-20	-					-becomes dense at 38.5'		22/6" 19/6" 19/6"	19								
7.83.0	-40	V V.	_			Bottom @ 40 ft.		1310									
COMPI DATE I DATE I LOGGI PROJE	BORI BORI ER:	NG S NG (STA	RTE		40 ft	hole was	backfil									epth
3	.011					Tolunay-Wong	Engi	ieers	s. In	c.—						Page 1	of 1

—Tolunay-Wong Engineers, Inc.–

DDC	\	— .T.	_	-11:-	- D	LOG OF BOR											
PRC	JJEC	1.	В	eau	mont,	Water Pump Station and Tunnel Texas	CLIEN				d Nic Texa		, Inc.				
ELEVATION (FT)	ОЕРТН (FT)	SAMPLE TYPE	SYMBOL	SAMPLE NUMBER	SAMPLE RECOVERY (FIELD %/LAB %)	GPS COORDINATE: 30.129500 deg 94.089833 deg STATE PLANE COORD: N E SURFACE ELEVATION: +5 ft DRILLING METHOD: Dry Aug.: 0 ' to 6 ' Wash Bored: 6 ' to MATERIAL DESCRIPTION	00 POCKET PEN (tsf) (T) TORVANE (tsf)	STD. PENETRATION TEST BLOWCOUNT	MOISTURE CONTENT (%)	DRY UNIT WEIGHT (pcf)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	SHEAR STRENGTH FIELD TEST, Su (ksf)	SHEAR STRENGTH LAB TEST, Su (ksf)	OTHER TESTS PERFORMED
5-	-0		<i>[]</i>		<u>V</u>	Tan and gray CLAYEY SAND (SC)	(T)0.30		20								
- -	_	X				-becomes very loose at 2.5'		1/6" 2/6" 1/6"	28				47				
0-	_ 5					Very soft, gray, tan FAT CLAY with SAND		WOH -	38								
-	_					(CH) -becomes firm and gray with organics from to 10'	6' (T)0.25	-	51	76	71	43	84				SA
-5-	- - - 10					-soft from 8' to 10'	(T)0.20		37	87						(C)0.24	
-5 -	- 10					Very loose gray CLAYEY SAND (SC)		WOH -	35				31				
								WOH	38								
-10 — —	— 15 —	X				Very loose gray POORLY GRADED SAND with SILT (SP-SM)		2/6" 2/6" 2/6"	27								
-	_					h		1/6" 2/6" 1/6"	30				8				
-15 —	20 	X				-becomes loose at 18.5'		3/6" 4/6" 3/6" 3/6"	24								
-	_					Medium dense gray POORLY GRADED		2/6" 6/6"	24				3				
-20 —	_ _ 25	\bigvee				SAND (SP)		7/6" 9/6" 6/6" 7/6"	24				3				
-	_	X						8/6" 6/6" 8/6" 11/6"	23								
-25	- - -30							7/6" 8/6" 8/6"	20				3				
-						Bottom @ 30 ft.											
233.014.GPJ IWELHOUS ION.GDJ 4/7/22 -32	— 35 — —																
-35.014.GPJ	_ 40																
COMI	BOR BOR	ING	ST	ART		30 ft NOTES: Free Water 2-25-21 2.5-ft. Borel 2-25-21 Unconfined C. Watts	iolė was ba	ckfilled	l with o	cemen	t-bent	onite g					epth =
PRO.		NO.:				21.23.014 Tolunay-Wong	Engi	neer	. In	c —						Page 1	of 1

PROJEC	T: (Collie	er Raw	LOG OF Water Pump Station and Tu	F BORING T		eese	and	l Nic	hols	Inc				
	È	Beau	mont,	Texas					Texa		,				
ELEVATION (FT) DEPTH (FT)	SAMPLE TYPE SYMBOL	SAMPLE NUMBER	SAMPLE RECOVERY (FIELD %/LAB %)	GPS COORDINATE: 94.090 STATE PLANE COORD: N E SURFACE ELEVATION: +7 ft DRILLING METHOD: Dry Aug.: 0' to 10' Wash Bore MATERIAL DESCRIPTION	0500 deg (st) (st) LOCKET PEN (tst) (st) (tst)	STD. PENETRATION TEST BLOWCOUNT	MOISTURE CONTENT (%)	DRY UNIT WEIGHT (pcf)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	SHEAR STRENGTH FIELD TEST, Su (ksf)	SHEAR STRENGTH LAB TEST, Su (ksf)	OTHER TESTS PERFORMED
—0 — 5—			Σ	Medium dense tan POORLY GRAD SAND with SILT (SP-SM)	DED	5/6" 5/6" 6/6"	16				40				
+	X		_	-becomes loose at 2.5'		3/6" 4/6" 5/6"	15				12				
—5 —				Soft, tan and gray FAT CLAY with S (CH) -becomes stiff at 6'	SAND (P)1.75	1/6" 2/6" 1/6"	28 28	98	59	43	78			(C)1.59	AN
+ + + 10				Tan and gray CLAYEY SAND (SC)											
-5—				-becomes very loose, gray and brov		WOH - -	29		39	20					
+ + + 15				Medium dense gray POORLY GRA SAND with SILT (SP-SM) -becomes very loose at 14.5'	NDED	6/6" 6/6" 3/6"	24				8				
-10 —						2/6" 2/6" 1/6"	43								
+ + +20				Firm gray ORGANIC CLAY (OH) -with shell fragments from 18' to 22		1/6"	111	44						(U)0.54	
-15 —	5555555555555				(T)0.25 (T)0.25		109	44	152	108	92				
——25 ——				Medium dense gray POORLY GRA SAND with SILT (SP-SM)	ADED	5/6" 10/6" 11/6"	23								
-20 —				-becomes loose at 28.5'		5/6" 7/6" 10/6" 5/6"	23				9				
-25—				Bottom @ 30 ft.		3/6" 3/6"									
-30															
COMPLETI DATE BOR DATE BOR LOGGER: PROJECT	ING S ING C	TART	ED:	2-25-21 5.0 2-25-21 Ur C. Watts	ee Water Depth = 6.0 0-ft. Borehole was bac nconsolidated-Undrain	kfilled	with c	emen	t-bento	onite g	rout. A	N: Ana	alytical T	esting. U:	
PROJECT	NO.:			21.23.014 	Engir		T							Page 1	of 1

DDC	VIE O		_	-11:-	- D	Weter Division Cte		G OF BORII											
PRC	JEC	1:	В	eau	mont,	Water Pump Sta Texas				: Fr Pe	eese	e and ind,	d Nic Texa	hols, s	, Inc.				
ELEVATION (FT)	ОЕРТН (FT)	SAMPLE TYPE	SYMBOL	SAMPLE NUMBER	SAMPLE RECOVERY (FIELD %/LAB %)	GPS COORDINATE STATE PLANE COO SURFACE ELEVAT DRILLING METHOL Dry Aug.: 0 ' to 10 MATERIAL	E:	30.129528 deg 94.091722 deg N E 5 ft n Bored: 10 ' to	(P) POCKET PEN (tsf) (T) TORVANE (tsf)	STD. PENETRATION TEST BLOWCOUNT	MOISTURE CONTENT (%)	DRY UNIT WEIGHT (pdf)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	SHEAR STRENGTH FIELD TEST, Su (ksf)	SHEAR STRENGTH LAB TEST, Su (ksf)	OTHER TESTS PERFORMED
5-	- 0					Stiff, gray and tan S	ANDY LE	EAN CLAY (CL)	(P)1.50		21								
-	_ _ _				፟∑				(P)1.75		28		40	21	64				
0-	_ _5								(P)1.75		22	101						(C)0.90	тс
-	_ _ _					Tan and gray CLAY	EY SAND) (SC)	(P)1.50		23	103	32	13	40			(U)0.72	
-5-	_ _ 10	X				Loose, gray and tan SAND (SP)	POORLY	Y GRADED		3/6" 5/6" 5/6"	24								
-5 -	— 10 —	X				-becomes gray at 10 -very loose from 10.	0.5' .5' to 12'			1/6" 1/6" 2/6"	23								
						ŕ				2/6" 3/6" 2/6"	23								
-10 —	_ 15 	X				-medium dense fror	n 14.5' to	20'		5/6" 6/6" 7/6"	24				3				
_	_	X								2/6" 4/6" 8/6"	24								
-15	_ 20	X								4/6" 6/6" 8/6"	23								
-13	_ _ _	X								3/6" 4/6" 4/6"	25				2				
-	_ _	X								4/6" 3/6" 2/6"	25								
-20 —	— 25 —	X				Very loose gray SIL -with clay seams from	TY SAND om 24.5' to	(SM) o 26'		2/6" 2/6" 2/6"	57								
_	<u> </u>	X				-medium dense fror	n 26.5' to	28'		2/6" 6/6" 9/6"	24				13				
-25	_ —30	X				-becomes loose at 2				3/6" 3/6" 4/6"	22								
-	- -					Botto	om @ 30 f	t.											
GDT 4/7/2	_ _																		
-30 —	— 35 —																		
TWEIH	_																		
21.23.014.GPJ TWEIHOUSTON.GDT 4/7/21 CO	_ —40																		
DATE DATE	BOR BOR	ING	ST	ART		30 ft 2-10-21 2-10-21	NOTES	6: Free Water De 6.0-ft. Borehold Unconsolidate	e was bad	kfilled	with o	emen	t-bento	onite g	rout. T	2-ft. 15 C: The	-min Tot ermal Co	al Hole De	epth = /. U:
DATE DATE LOGO PROJ		NO.:				C. Watts 21.23.014	unov V	Vong	Engir	10040	, I.	o						Page 1	of 1

			Be	eau	mont,	Water Pump Station and Tunnel Texas		P	earla	ind,	Теха	S	,			I	
ELEVATION (FT)	БЕРТН (FT)	SAMPLE TYPE	SYMBOL	SAMPLE NUMBER	RECOVERY %/LAB %)	GPS COORDINATE: 30.129528 deg 94.092611 deg STATE PLANE COORD: N E	ET PEN (tsf) /ANE (tsf)	STD. PENETRATION TEST BLOWCOUNT	MOISTURE CONTENT (%)	DRY UNIT WEIGHT (pcf)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	SHEAR STRENGTH FIELD TEST, Su (ksf)	SHEAR STRENGTH LAB TEST, Su (ksf)	OTHER TESTS
ELEVAT	DEPT	SAMPL	SYN	SAMPLE	SAMPLE F (FIELD 9	GPS COORDINATE: 30.129528 deg 94.092611 deg STATE PLANE COORD: N E SURFACE ELEVATION: +5 ft DRILLING METHOD: Dry Aug.: 0 ' to 12' Wash Bored: 12' to MATERIAL DESCRIPTION	32 (P) POCKE (T) TORY	STD. PEN TEST BL(MOIS	DRY UNI'	SINI	PLAS	PASSII SIEV	ORG	SHEAR S FIELD TE	SHEAR S LAB TES	OTHER
5—	_0 _					Firm, gray and tan FAT CLAY (CH)	(T)0.30		27								
-	_					-becomes stiff at 2'	(P)1.50		30		57	35	88				
0-	_ _ 5				_		(P)1.50		32								A S
_	<u> </u>				$\overline{\Delta}$	Gray CLAYEY SAND (SC)	(T)0.35		35								
_	<u> </u>	<i>!</i>					(T)0.15		44	84	68	45	44				
-5— —	— 10 —						(T)0.10		38	76						(U)0.22	
_	_ _ _					-becomes loose at 12.5'		1/6" 2/6" 4/6"	45				24				
-10 —	 15	X				-becomes medium dense at 14.5'		2/6" 5/6" 8/6"	25								
	_	X						3/6" 5/6" 6/6"	25								
- -15 —	_ _ 20	X				Firm gray SANDY FAT CLAY (CH)		1/6" 2/6" 4/6"	54				57				
-13 –	_	X				Medium dense gray POORLY GRADED SAND (SP)		5/6" 6/6" 5/6"	23								
_	_							5/6" 7/6" 9/6"	24								
- -20 —	_ 25							3/6" 5/6" 9/6"	24				4				
_	_							7/6" 9/6"	24								
_	_							5/6" 9/6"	25								
-25 — —	—30 —							11/6"									
_	_					Medium dense gray POORLY GRADED		5/6"	21				7				
-30 —	— — 35	X				SAND with SILT (SP-SM) Bottom @ 35 ft.		5/6" 7/6"					,				
-	- - -																
- -35 —	_ 40																
COMF DATE DATE LOGG	BOR BOR	ING	ST	ARTI		35 ft NOTES: Free Water E 2-9-21 8.5-ft. Boreh 2-9-21 Swell Test. S C. Watts TC: Thermal	ole was bad A: Sieve A	ckfilled nalysis	with o	cemen	t-bento	onite g	rout. A	N: Ana			

Engineers, Inc.-

		_	_			LOG OF BORII											
PRO	JEC	:1:	Be	ollie eau	r Raw mont,	Water Pump Station and Tunnel (Texas		: Fr Pe	eese	e and ind,	d Nic Texa	hols s	, Inc.				
ELEVATION (FT)	ОЕРТН (FT)	SAMPLE TYPE	SYMBOL	SAMPLE NUMBER	SAMPLE RECOVERY (FIELD %/LAB %)	GPS COORDINATE: 30.129583 deg 94.092611 deg STATE PLANE COORD: N E SURFACE ELEVATION: +4 ft DRILLING METHOD: Dry Aug.: 0' to 10' Wash Bored: 10' to MATERIAL DESCRIPTION	(P) POCKET PEN (tsf) (T) TORVANE (tsf)	STD. PENETRATION TEST BLOWCOUNT	MOISTURE CONTENT (%)	DRY UNIT WEIGHT (pdf)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	SHEAR STRENGTH FIELD TEST, Su (ksf)	SHEAR STRENGTH LAB TEST, Su (ksf)	OTHER TESTS PERFORMED
-	_0 _					Stiff, gray and tan SANDY LEAN CLAY (CL)	(P)1.50		27		45	25	67				
_	_						(P)1.75		30								
0-	- 5				Ā	-becomes firm at 4'	(T)0.30		22	107						(C)0.92	
_	_					Gray CLAYEY SAND (SC)	(T)0.25		25	104	29	7	27				
-5	_	X				-becomes very loose at 8.5'		WOH	42								
	— 10 –	X						1/6" 2/6" 2/6"	31								
10	_	X				Firm gray SANDY FAT CLAY (CH)		1/6" 2/6" 3/6"	51				62				
-10	_ 15 	X				Loose gray POORLY GRADED SAND (SP)		2/6" 3/6" 5/6"	23								
_	_	X						2/6" 3/6" 6/6"	23								
-15	- 20	X				-medium dense from 18.5' to 20'		3/6" 8/6" 8/6"									
_	_ _ _	X						3/6" 3/6" 3/6"	25				4				
-20	_	X						2/6" 4/6" 6/6"	20								
-	— 25 –	X				-becomes medium dense at 24.5'		6/6" 10/6" 12/6"									
 -	_	X						6/6" 9/6" 14/6"	32								
-25 -	- 30 	X				Medium dense gray POORLY GRADED SAND with SILT (SP-SM)		3/6" 9/6" 15/6"	23				5				
-30	- - - -35	X				-becomes loose at 33.5'		5/6" 4/6" 4/6"	22								
	- 35 - - -					Bottom @ 35 ft.											
-35	- 40																
COMF DATE DATE LOGG PROJ	BOR BOR ER:	ING ING	ST	ART		35 ft NOTES: Free Water De 6.8-ft. Borehol WOH: Weight C. Watts 21.23.014	e was bad	ckfilled	5-min with o	Static cemen	Water t-bent	Depth onite g	n = 4.6 rout. C	-ft. 15- C: Unco	min Tota	al Hole De Compress Page 1	ion.

-Tolunay-Wong Engineers, Inc.-

LOG OF BORING 21.23.014.GPJ TWEI HOUSTON.GDT 4/7/21

							LOG	OF BORI	NG T	B-8									
PRC	JEC	T:	Co Be	ollie eaur	r Raw mont,	Water Pump Sta Texas	ition and	Tunnel (CLIENT				d Nic Texa		Inc.				
ELEVATION (FT)	ОЕРТН (FT)	SAMPLE TYPE	SYMBOL	SAMPLE NUMBER	SAMPLE RECOVERY (FIELD %/LAB %)	GPS COORDINATI STATE PLANE CO SURFACE ELEVAT DRILLING METHOI Dry Aug.: 0 ' to 10 MATERIA	E: 30 94 ORD: N E- ION: +6 D: ' Wash	0.129944 deg 0.093500 deg 	(P) POCKET PEN (tsf) (T) TORVANE (tsf)	STD. PENETRATION TEST BLOWCOUNT	MOISTURE CONTENT (%)	DRY UNIT WEIGHT (pcf)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	SHEAR STRENGTH FIELD TEST, Su (ksf)	SHEAR STRENGTH LAB TEST, Su (ksf)	OTHER TESTS PERFORMED
5—	0 					Tan and brown POO (SP), with roots and	organics				21								
- -	_ _ 5				Ā	Stiff, tan and gray S -becomes firm at 4'	ANDY LEA	N CLAY (CL)	(P)1.75 (T)0.30		16	109 99	39	20	53			(C)0.45 (U)0.61	TC
0-	_					Firm, gray and tan I -with organics from	FAT CLAY 6' to 8'	(CH)	(T)0.40 (T)0.35		38 55								
_ _ _5_	_ 10 					-becomes very soft	and gray w	ith sand	(1)0.33	WOH	68		87	57	88				
_	_ _ _					pockets at 10.5'				WOH	72								
-10 — -10 —	— 15 —					Loose gray POORL SILT (SP-SM)	Y GRADEI	SAND with		3/6" 3/6" 6/6" 1/6" 4/6"	22				10				
_ _ _	_ _ 20					Medium dense gray SAND (SP)	POORLY	GRADED		6/6" 4/6" 4/6" 7/6"	24				0				
-15 - -	_ _ _	X								9/6" 9/6" 10/6" 5/6" 6/6"	21				2				
- -20 —	_ — 25 _									7/6" 8/6" 9/6" 10/6"	24								
_ _ _	_ _ _									3/6" 7/6" 10/6"	24				3				
-25 —	—30 —					Botto	m @ 30 ft.			9/6" 13/6"									
-30	_ _ _ 35 _																		
-	_ _ _ 40																		
COMI DATE DATE	PLETI BOR	ING :	STA	ARTI		30 ft 2-10-21 2-10-21	NOTES:	Free Water Do 5.2-ft. Borehol Unconsolidate	ė was bad	kfilled	with c	emen	t-bento	onite g	rout. T	C: The	ermal Co	onductivity	

LOG OF BORING 21.23.014.GPJ TWEI HOUSTON.GDT 4/7/21

2-10-21 2-10-21 C. Watts 21.23.014

			В	eau	mont,	Water Pump Station and Tunnel Texas		Pe	earla	nd,	Теха	s		, ,		T	
ELEVATION (FT)	ОЕРТН (FT)	SAMPLE TYPE	SYMBOL	SAMPLE NUMBER	SAMPLE RECOVERY (FIELD %/LAB %)	GPS COORDINATE: 30.130333 deg 94.094333 deg STATE PLANE COORD: N E SURFACE ELEVATION: +5 ft DRILLING METHOD: Dry Aug.: 0 ' to 12 ' Wash Bored: 12 ' to MATERIAL DESCRIPTION	(P) POCKET PEN (tsf) (T) TORVANE (tsf)	STD. PENETRATION TEST BLOWCOUNT	MOISTURE CONTENT (%)	DRY UNIT WEIGHT (pdf)	LIQUID LIQUID	PLASTICITY INDEX (%)	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	SHEAR STRENGTH FIELD TEST, Su (ksf)	SHEAR STRENGTH LAB TEST, Su (ksf)	
5— —	_0 _					Firm, gray and tan SANDY LEAN CLAY (CL)	(T)0.35		24		39	23	50				
_	_				∇	Stiff, gray and tan FAT CLAY with SAND (CH)	(P)2.00		25								
0-	_ 5						(P)2.00		26	98	59	40	80				
_	_						(P)2.25		26								
_	_						(P)1.50		29								
-5 — —	— 10 —					Stiff, gray and brown SANDY FAT CLAY (CH)	(P)2.00		26	96	53	37	63				1
-	_						(P)2.00		29								
- -10 —	− −15						(P)1.50		31								
_		X				Loose gray POORLY GRADED SAND with SILT (SP-SM)		4/6" 3/6" 4/6"	25				8				1
45	_					-becomes medium dense at 18.5'		5/6" 7/6" 13/6"	22								
-15 	- 20 - -		[1 ^k]			Medium dense gray POORLY GRADED SAND (SP)		6/6" 8/6" 11/6"	21								+
_								5/6" 7/6" 9/6"	21				4				
-20 -	— 25 —							5/6" 8/6" 10/6"	21								
_		X				Medium dense gray POORLY GRADED SAND with SILT (SP-SM)		4/6" 3/6" 9/6"	27								1
_ -25 —	_ 30	X				D. H		11/6" 11/6" 12/6'	18				5				
_						Bottom @ 30 ft.											
_																	
-30 — —	— 35 —																
_	_																
-35 -	- -40																
	BOR BOR	ING	ST	ART		30 ft NOTES: Perched water was backfille Sieve Analys	d with cem										
LOGO PROJ		NO.:				C. Watts 21.23.014 Tolunay-Wong	Engir									Page 1	١.

PRO	JEC	T:	С	ollie eau	r Raw mont,	LOG OF BORING Water Pump Station and Tunnel Texas		: Fr	eese	e and	d Nic Texa	hols s	, Inc.				
ELEVATION (FT)	ОЕРТН (FT)	SAMPLE TYPE		SAMPLE NUMBER	SAMPLE RECOVERY (FIELD %/LAB %)	GPS COORDINATE: 30.130722 deg 94.095167 deg STATE PLANE COORD: N E SURFACE ELEVATION: +6 ft DRILLING METHOD: Dry Aug.: 0 ' to 10 ' Wash Bored: 10 ' to MATERIAL DESCRIPTION	(P) POCKET PEN (tsf) (T) TORVANE (tsf)	STD. PENETRATION TEST BLOWCOUNT	MOISTURE CONTENT (%)	<u> </u>			PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	SHEAR STRENGTH FIELD TEST, Su (ksf)	SHEAR STRENGTH LAB TEST, Su (ksf)	OTHER TESTS
5 —	_0 _					FILL: CRUSHED AGGREGATE (24")			12								
	_ _ _ 5	X			Σ	Soft, gray and tan SANDY FAT CLAY (CH) -becomes stiff at 4'	(P)1.50	2/6" 1/6" 2/6"	19 25	94	54	34	69				
0-	- -				_	Tan CLAYEY SAND (SC)	(T)0.20		23								
	_ _ _	X				Loose gray POORLY GRADED SAND with SILT (SP-SM)		3/6" 3/6" 3/6"	24				11				
-5	- 10 - -					-medium dense from 10.5' to 14'		7/6" 5/6" 8/6"	25								
	_							4/6" 5/6" 6/6"	24								
-10	_ 15 							3/6" 3/6" 5/6"	22				7				
-10	_					-becomes medium dense at 16.5'		5/6" 9/6" 10/6"	25								
	_ 20							8/6" 12/6" 12/6"	25								
-15	_ _ _	X	1			Medium dense gray POORLY GRADED SAND (SP)		2/6" 7/6" 10/6"	23				3				
+	_							7/6" 10/6" 15/6"									
-20	— 25 —					-with organics from 24.5' to 28'		9/6" 6/6" 5/6"	24								
-	_	X	 ///			-with gravel from 26.5' to 28' Hard, gray and tan LEAN CLAY with SAND	(P)4.50	5/6" 4/6" 5/6"	31 19		46	32	71				_
	_ 30					(CL) Bottom @ 30 ft.	(,),,,,,										_
-25 -	_ _ _					Bottom @ oo it.											
-30	35 																
	-40																
LOGG	BOR BOR SER:	ING ING	ST	ART		30 ft NOTES: Free Water Do 2-26-21 6.0-ft. Borehol 2-26-21 C. Watts								-ft. 15-	min Tota	al Hole De	ept
PROJ	ECT	NO.:				21.23.014 Tolunay-Wong	Engir	100	, T	•						Page 1	0

atts
.014

——Tolunay-Wong Engineers, Inc.—

			В	eau	mont,	Water Pump Station and Tunnel Texas		P			Теха						_
ELEVATION (FT)	DEPTH (FT)	SAMPLE TYPE	SYMBOL	SAMPLE NUMBER	SAMPLE RECOVERY (FIELD %/LAB %)	GPS COORDINATE: 30.131139 deg 94.09625 deg STATE PLANE COORD: N E SURFACE ELEVATION: +20 ft DRILLING METHOD: Dry Aug.: 0' to 16' Wash Bored: 16' to MATERIAL DESCRIPTION	POCKET PEN (tsf) (T) TORVANE (tsf)	STD. PENETRATION TEST BLOWCOUNT	MOISTURE CONTENT (%)	DRY UNIT WEIGHT (pcf)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	SHEAR STRENGTH FIELD TEST, Su (ksf)	SHEAR STRENGTH LAB TEST, Su (ksf)	OTHER TESTS
20	0					Stiff, gray and tan FAT CLAY (CH)	(P)1.50		33		94	74	91				1
+							(P)2.00		26								
15—	- 5					Hard, gray and tan SANDY LEAN CLAY (CL)	(P)4.50		19	111							
+						-very stiff from 6' to 8'	(P)4.00		18	111	44	31	59			(C)2.96	,
10	- 10					-become stiff at 8'	(P)2.50		18								
+		X			∇	Medium dense tan CLAYEY SAND (SC)		4/6' 7/6" 10/6"	21								t
+						-with calcareous nodules from 12.5' to 14'		7/6" 7/6" 7/6"	25				33				
5	- 15	X						5/6" 7/6" 9/6"	30								
+						Very stiff, gray and tan FAT CLAY (CH)	(P)3.00		26	105	62	39	97			(U)1.82	
+							(P)3.75		30								
0+	-20					-with ferrous nodules from 20' to 22' -stiff from 20' to 24'	(P)1.75		32								
Ī						-slickensided from 22' to 26'	(P)2.25		22	109	52	38	93			(U)1.80	
-5	- 25						(P)3.50		20								
+						-with sand pockets from 28' to 35'	(P)3.00 (P)4.25		22		72	53	96				
-10	-30																
-15	- 35						(P)4.25										
-20	-40			_√		-slickensided from 38' to 40'	(P)3.50		23								
COMPL DATE E DATE E LOGGE	BORI BORI	NG	ST	ART	ED:	50 ft NOTES: Free Water D 2-26-21 = 12.0-ft. Bor 2-26-21 Swell Test. S. C: Unconfine	ehole was A: Sieve A	backfi nalysis	lled w	ith cen	nent-b	entoni	te grou	ıt. AN:	5-min To Analytic	otal Hole D al Testing	⊥_)ep j. S

LOG OF BORING TB-11												
PROJECT: Collie Beau	r Raw Water Pump Sta mont, Texas	ation and Tunnel C	LIENT	: Free	ese and	d Nic Texa	hols, s	Inc.				
ELEVATION (FT) DEPTH (FT) SAMPLE TYPE SYMBOL SAMPLE NUMBER	GPS COORDINATE GPS COORDINATE	E: 30.131139 deg 94.09625 deg ORD: N E ION: +20 ft D: ' Wash Bored: 16 ' to 5	(P) POCKET PEN (tsf) (T) TORVANE (tsf)	STD. PENETRATION TEST BLOWCOUNT MOISTURE	CONTENT (%) DRY UNIT WEIGHT (pcf)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	SHEAR STRENGTH FIELD TEST, Su (ksf)	SHEAR STRENGTH LAB TEST, Su (ksf)	OTHER TESTS PERFORMED
-20 -40	-											
-25 — 45	Stiff, gray and tan L sand pockets and sa	EAN CLAY (CL), with and seams	(P)2.50	2	20	31	18	89				
+	-becomes very stiff	at 48'	(P)4.25	2	20							
-30 — 50	Botto	m @ 50 ft.										
-35 — 55												
-40 60												
-45 65 												
-50 												
-55 — 75 — — — — — — — — — — — — — — — — — — —												
COMPLETION DEPTH: DATE BORING STARTI DATE BORING COMPL LOGGER: PROJECT NO.:	ED: 2-26-21	NOTES: Free Water De = 12.0-ft. Borel Swell Test. SA: C: Unconfined	ole was Sieve A Compres	backfilled nalysis. U ssion.	d with cen J: Uncons	nent-be	entonit	e grou	t. AN: /	i-min Tot Analytica	al Testing	. SW:
		unay-Wong	Engin	ieers,	Inc.—						Page 2	of 2

-Tolunay-Wong Engineers, Inc.-

DD0.1507 0 !!!	LOG OF BO											
	r Raw Water Pump Station and Tunnel mont, Texas	CLIENT		eese earlar				, Inc.				
ELEVATION (FT) DEPTH (FT) SAMPLE TYPE SYMBOL SAMPLE NUMBER	GPS COORDINATE: 30.131194 c 94.09625 de 94.0962 de 94.09625 de 94.09625 de 94.09625 de 94.09625 de 94.0962	- 6 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	STD. PENETRATION TEST BLOWCOUNT	MOISTURE CONTENT (%)	DRY UNIT WEIGHT (pcf)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	SHEAR STRENGTH FIELD TEST, Su (ksf)	SHEAR STRENGTH LAB TEST, Su (ksf)	OTHER TESTS
20 0	Stiff, gray and tan FAT CLAY (CH)	(T)0.75 (P)2.50		24								
	-becomes very stiff at 2'	(P)3.00		20		74	57	94				Al S
15 — 5	Gray and tan CLAYEY SAND (SC) -with ferrous nodules from 4' to 8'	(P)4.50		17								A
15 — 5	-with ferrous nodules from 4° to 8°	(P)4.50		16	113	39	20	49			(C)2.34	
	abla	(T)0.30		19								
10 — 10	-becomes medium dense at 10.5'		9/6" 9/6"	19				32				
			8/6" 5/6" 6/6" 7/6"	24								
5—15	Stiff, tan and gray FAT CLAY with SAND (CH)		4/6" 6/6" 7/6"	32		54	33	76				
			3/6" 5/6" 4/6"	29								
	Very stiff, brown and gray FAT CLAY (Cl -slickensided from 18' to 20'	H) (P)3.25		31	91						(U)2.13	
0 — 20		(P)3.00		35								
	-stiff with slickensides from 22' to 24'	(P)2.50		21	107	55	40	96				
-5-25		(P)3.25		20								
		(P)3.25		22	105						(U)2.41	
10 — 30		(P)4.00		24	102	54	32	96				
-15 - 35		(P)3.75		22								
-20 -40	-slickensided from 38' to 40'	(P)3.50		28								
COMPLETION DEPTH: DATE BORING STARTE DATE BORING COMPL LOGGER: PROJECT NO.:	ED: 2-23-21 = 11.5-ft	ter Depth = 12. . Borehole was nalysis. U: Unco	backfill	led witl	h cem	ent-be	entonit	te grou	ıt. AN:	Analytic	al Testing	

LOG OF BORING TB-12 PROJECT: Collier Raw Water Pump Station and Tunnel CLIENT: Freese and Nichols, Inc.													
PROJEC	Beau	mont,	Texas		: Fr Pe	eese a	nd Nic I, Texa	:hois Is	, Inc.				
ELEVATION (FT) DEPTH (FT)	SAMPLE TYPE SYMBOL SAMPLE NUMBER	SAMPLE RECOVERY (FIELD %/LAB %)	GPS COORDINATE: 30.131194 deg 94.09625 deg STATE PLANE COORD: N E SURFACE ELEVATION: +20 ft DRILLING METHOD: Dry Aug.: 0 ' to 12 ' Wash Bored: 12 ' to	(P) POCKET PEN (tsf) (T) TORVANE (tsf)	STD. PENETRATION TEST BLOWCOUNT	MOISTURE CONTENT (%) DRY UNIT WEIGHT	(pdf) LIQUID LIMIT (%)	PLASTICITY INDEX (%)	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	SHEAR STRENGTH FIELD TEST, Su (ksf)	SHEAR STRENGTH LAB TEST, Su (ksf)	OTHER TESTS
-20 — 40													
-25 — 45			Very stiff, gray and brown LEAN CLAY (CL), with sand pockets	(P)3.25		18	33	20	87				
+			Hard, gray and tan FAT CLAY with SAND (CH)	(P)4.50		20							
-30 — 50			Bottom @ 50 ft.										
+													
-35 — 55													
-40 — 60													
+													
-45 65 													
-50 -70													
+++++++++++++++++++++++++++++++++++++++													
-55 75 													
-60 + 80													
COMPLETION DEPTH: 50 ft NOTES: Free Water Depth = 12.0-ft. 15-min Static Water Depth = 10.0-ft. 15-min Total Hole Depth = 11.5-ft. Borehole was backfilled with cement-bentonite grout. AN: Analytical Testing. S DATE BORING COMPLETED: 2-23-21 Sieve Analysis. U: Unconsolidated-Undrained. C: Unconfined Compression. LOGGER: C. Watts													

—Tolunay-Wong Engineers, Inc.—

LOG OF BORING TB-13 PROJECT: Collier Raw Water Pump Station and Tunnel Beaumont, Texas CLIENT: Freese and Nichols, Inc. Pearland, Texas																	
			В	eau	mont,	Texas		Pe	earla	nd,	Теха	S	,				
ELEVATION (FT)	ОЕРТН (FT)	SAMPLE TYPE	SYMBOL	SAMPLE NUMBER	SAMPLE RECOVERY (FIELD %/LAB %)	GPS COORDINATE: 30.131139 deg 94.096306 deg STATE PLANE COORD: N E SURFACE ELEVATION: +20 ft DRILLING METHOD: Dry Aug.: 0' to 12' Wash Bored: 12' to MATERIAL DESCRIPTION	(P) POCKET PEN (tsf) (T) TORVANE (tsf)	STD. PENETRATION TEST BLOWCOUNT	MOISTURE CONTENT (%)	DRY UNIT WEIGHT (pcf)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	SHEAR STRENGTH FIELD TEST, Su (ksf)	SHEAR STRENGTH LAB TEST, Su (ksf)	OTHER TESTS PERFORMED
20 —	—0 —					Stiff, gray and tan FAT CLAY (CH)	(P)2.00										
_ _ _	_						(P)2.50		26		81	61	92				
15 —	-5					Very stiff, gray and tan LEAN CLAY (CL)	(P)3.00		17	111						(C)1.94	TC
_ _ _	_ _ _					Hard, gray and tan SANDY LEAN CLAY (CL)	(P)4.50		17	114	41	25	51				
- 10 <i>-</i>	_ _ 10	X				Medium dense, tan and gray CLAYEY SAND (SC)		5/6" 7/6" 9/6"	20								
_	_ _ _	X			$\bar{\Delta}$			6/6" 6/6" 6/6"	23				50				
_	_	X						8/6" 8/6" 7/6"	26								
5 -	— 15 —	X				Stiff, tan and gray LEAN CLAY with SAND (CL)		5/6" 7/6" 8/6"	33				81				
_	_	X				Stiff, gray and tan FAT CLAY (CH)		3/6" 4/6" 5/6"	29								
_	_ _					-very stiff from 18' to 20'	(P)3.00	5/6	28	96							
0 —	—20 —					-with calcareous nodules from 20' to 22'	(P)2.50		32	92	73	49	94			(C)1.78	
-	_						(P)2.50		16	114							
-5 —	_ 25						(P)2.25		20								
_	_						(P)2.50		22		54	39	96				
-10 —	- - -30					-becomes very stiff at 28' -with sand pockets from 28' to 30'	(P)3.50		23	103						(C)2.40	
- - -	_ _ _ _						(P)3.50		22								
-15 — — — — — —	- 35 - - - - - - 40			7/		-slickensided from 38' to 40'	(P)3.50		34	93							
DATE	COMPLETION DEPTH: 50 ft NOTES: Free Water Depth = 12.0-ft. 15-min Static Water Depth = 10.4-ft. 15-min Total Hole Depth DATE BORING STARTED: 2-8-21 = 11.3-ft. Borehole was backfilled with cement-bentonite grout. U: DATE BORING COMPLETED: 2-8-21 Unconsolidated-Undrained. C: Unconfined Compression.											te grou					

DATE BORING COMPLETED:
LOGGER:
PROJECT NO.:

LOG OF BORING 21.23.014.GPJ TWEI HOUSTON.GDT 4/7/21

2-8-21 C. Watts 21.23.014

PROJECT: Collier Raw Water Pump Station and Tunnel CLIENT: Freese and Nichols, Inc. Beaumont, Texas Pearland, Texas																	
ELEVATION (FT)	DEPTH (FT) SAMPLE TYPE	SYMBOL	SAMPLE NUMBER	SAMPLE RECOVERY (FIELD %/LAB %)	GPS COORDINATE: 39 STATE PLANE COORD: N SURFACE ELEVATION: +: DRILLING METHOD: Dry Aug.: 0 ' to 12 ' Wash MATERIAL DESCR	0.131139 deg 14.096306 deg 1 20 ft 1 1 20 ft 1 Bored: 12 ' to 5	(P) POCKET PEN (tsf) (T) TORVANE (tsf)	STD. PENETRATION TEST BLOWCOUNT	MOISTURE CONTENT (%)	DRY UNIT WEIGHT (pcf)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	PASSING #200 SIEVE (%)	ORGANIC CONTENT (%)	SHEAR STRENGTH FIELD TEST, Su (ksf)	SHEAR STRENGTH LAB TEST, Su (ksf)	OTHER TESTS
+	45				-becomes hard with sand poc 50'	kets from 43' to	(P)4.50 (P)4.50		18		21	7	86				
-30	50				Bottom @ 50 f	t											L
-40	55 60 65																
-60	75 80				TO A NOTES	C. Free Weter De	- 42	O # 45		Otatia (Mata	Donath	10	4 # 45	onin To	tol Hala D	
DATE B DATE B LOGGE PROJEC	ORING ORING R:	ST/ CO	ARTE		50 ft NOTES 2-8-21 2-8-21 C. Watts 21.23.014	= 11.3-ft. Boreh Unconsolidated	ole was	backfil ned. C	lled wi	th cen	nent-be	entonit	e grou		o-min To	tal Hole D Page 2	

KEY TO SYMBOLS AND TERMS USED ON BORING LOGS FOR SOIL

Sampler Symbols Meaning **Most Common Unified Soil Classifications System Symbols** Pavement core Lean Clay (CL) Well Graded Sand (SW) Thin - walled tube sample Standard Penetration Test (SPT) Well Graded Sand w/ Gravel (SW-GM) Lean Clay w/ Sand (CL) Auger sample Poorly Graded Sand (SP) Sandy Lean Clay (CL) Sampling attempt with no recovery Field Test Data Poorly Graded Sand w/ Silt (SP-SM) Fat Clay (CH) 16/24" Sample Recovery (%) (P) 2.50 Pocket penetrometer reading in tons per square foot Fat Clay w/ Sand (CH) (T) 1.13 Torvane Measurement in tons per square foot 8/6" Blow count per 6 - in. interval of the Standard Sandy Fat Clay (CH) Elastic Silt (MH) Penetration Test DP Drill rig down pressure during tube push in pounds/square inch Elastic Silt w/ Sand (MH-SP) Silty Clay (CL-ML) PID Photoionization detector PPM Parts per million Silty Gravel (GM) Sandy Silty Clay (CL-ML) Observed free water during drilling Observed static water level Clayey Gravel (GC) Silty Clayey Sand (SC-SM) **Laboratory Test Data** Well Graded Gravel (GW) Clayey Sand (SC) Wc (%) Moisture content in percent Dens. (pcf) Dry unit weight in pounds per cubic foot Well Graded Gravel w/ Sand (SP-GM) Sandy Silt (ML) LL Liquid Limit in percent PΙ Plasticity Index Poorly Graded Gravel (GP) Silty Sand (SM) #200 (%) Percent passing the No. 200 mesh sieve Strength Legend (ksf) Peat Silt w/ Sand (ML) Qu Unconfined Compressive Strength Su Undrained Shear Strength UU Unconsolidated-Undrained Test Miscellaneous Materials UC **Unconfined Compression Test** T Torvane Asphalt and/or Base Concrete P Pocket Penetrometer ***

RELATIVE DENSITY OF COHESIONLESS & SEMI-COHESIONLESS SOILS

The following descriptive terms for relative density apply to cohesionless soils such as gravels, silty sands, and sands as well as semi-cohesive and semi-cohesionless soils such as sandy silts, and clayey sands.

Relative	Typical N
Density	Value Range*
Very Loose	Less than 4
Loose	4-10
Medium Dense	10-30
Dense	30-50
Very Dense	Greater than 50

^{*} N is the number of blows from a 140-lb weight having a free fall of 30-in. required to penetrate the final 12-in. of an 18-in. sample interval.

CONSISTENCY OF COHESIVE SOILS

The following descriptive terms for consistency apply to cohesive soils such as clays, sandy clays, and silty clays.

Miniature Vane Shear

Undrained Shear Strength, Su (ksf)**	Consistency	Blows per Foot
< 0.25	Very soft	< 2
0.25 - 0.50	Soft	2-4
0.50 - 1.00	Medium	4-8
1.00 - 2.00	Firm	8-15
2.00 - 4.00	Very Firm	15-30
> 4.00	Hard	> 30

^{**} Su = T = M; Su = Qu/2 = P/2

M

^{***} Based on our experience, we adjusted the field measurements of the undrained shear strength of natural, overconsolidated Pleistocene Gulf Coast clays by applying a correction factor of 0.67 to the penetrometer readings. The strengths measured by penetrometer are paritally controlled by the presence of macroscopic soil defects and features such as slickensides, which are generally not reflected in penetrometer readings.

Tolunay-Wong Engineers, Inc. -

APPENDIX D	Α	Р	P	Εľ	V	D	$ \rangle$	(D
------------	---	---	---	----	---	---	-------------	---	---

FNI STANDPIPE PIEZOMETER INSTALLATIONS

4	Drawn M.A						
Tolunay-Wong Engineers, Inc.	Checked	T.G.H.	07-22-2021				
IX	Approved	T.G.H.	07-22-2021				
PIEZOMETER INSTALLATION CROSS SECTION COLLIER RAW WATER PUMP STATION AND TUNNEL	Scale	N.T.S.					
CITY OF BEAUMONT BEAUMONT, TEXAS	TWE DRA	WING NO	21.23.014-4				

APPENDIX E

TEST REPORTS

Soil pH Test (ASTM G51)

Project No: 21.23.014

Client: Freese and Nichols, Inc.

pH Meter Verification

Buffer Solution: 7.00 Buffer Solution: 4.00 Result: 4.00 Result: 7.02

Temperature, C: 21.1 Temperature, C: 21.2

Buffer Solution: 10.00 Result: 10.05 Result:

Buffer Solution: ______
Temperature, C: _____ Temperature, C: 21.0

Sample No.	рН	Temperature, C
TB-1 (2'-4')	8.34	20.5
TB-4 (4.5'-6')	6.16	20.5
TB-9 (2'-4')	4.42	20.4
TB-12 (2'-4')	5.66	20.4
TB-12 (4'-6')	8.69	20.6

pH Meter S/N: C008035300 Thermometer S/N: C008035300

Tested By: F. Salas **Date:** 3/12/21

Checked By: F. Salas **Date:** 3/12/21

TESTING, RESEARCH, CONSULTING AND FIELD SERVICES

Austin, TX - USA | CA - USA | SC - USA | Gold Coast - Australia | Suzhou - China | Sao Paulo, Brazil | Johannesburg - Africa

Client: Tolunay Wong Engineers, Inc. TRI Log #: 62328

Project: 21.23.014 - FNI - CoBMT - Collier Raw Water Pump Station

Jeffrey A. Kuhn, Ph.D., P.E., 3/22/2021

Quality Review/Date

Analytical

COC Line #	Sample Identification	Sulfate Content (mg SO ₄ /kg)	Chloride Content (mg/kg)
-	Test Method	ASTM C1580	ASTM D512
-	Method Detection Limit (MDL)	[5 mg/l]*	[5 mg/l]*
1	TB-1 (2.0-4.0)	500	120
2	TB-4 (4.5-6.0)	500	90
3	TB-9 (2.0-4.0)	600	270
4	TB-12 (2.0-4.0)	600	60
5	TB-12 (4.0-6.0)	500	60

⁽¹⁾ ND No Detection - Below Method Detection Limit (MDL)

⁽²⁾ MDL The chloride and sulfate MDLs are volumetric. Results are mass per mass of dry soil.

TESTING, RESEARCH, CONSULTING AND FIELD SERVICES

Austin, TX - USA | CA - USA | SC - USA | Gold Coast - Australia | Suzhou - China | Sao Paulo, Brazil | Johannesburg - Africa

Client: Tolunay Wong Engineers, Inc. TRI Log #: 62476

Project: 21.23.014 - FNI - CoBMT - Collier Raw Water Pump Station

Jeffrey A. Kuhn, Ph.D., P.E., 3/25/2021

Quality Review/Date

Analytical

COC Line #	Sample Identification	Sulfate Content (mg SO ₄ /kg)	Chloride Content (mg/kg)	рН
-	Test Method	ASTM C1580	ASTM D512	ASTM G51
-	Method Detection Limit (MDL)	[5 mg/l]*	[5 mg/l]*	-
1	TB-11 / 01-2.0	3,300	150	7.16

⁽¹⁾ ND No Detection - Below Method Detection Limit (MDL)

⁽²⁾ MDL The chloride and sulfate MDLs are volumetric. Results are mass per mass of dry soil.

TESTING, RESEARCH, CONSULTING AND FIELD SERVICES

Austin, TX - USA | CA - USA | SC - USA | Gold Coast - Australia | Suzhou - China | Sao Paulo, Brazil | Johannesburg - Africa

Client: Tolunay Wong Engineers, Inc. TRI Log #: 62004

Project: 21.23.014 - FNI - CoBMT - Collier Raw Water Pump Station

Jeffrey A. Kuhn, Ph.D., P.E., 3/2/2021

Quality Review/Date

Analytical

COC Line #	Sample Identification	Sulfate Content (mg SO ₄ /kg)	Chloride Content (mg/kg)	рН
-	Test Method	ASTM C1580	ASTM D512	ASTM G51
-	Method Detection Limit (MDL)	[5 mg/l]*	[5 mg/l]*	-
1	TB-6 (4.0-6.0)	900	240	9.75

⁽¹⁾ ND No Detection - Below Method Detection Limit (MDL)

⁽²⁾ MDL The chloride and sulfate MDLs are volumetric. Results are mass per mass of dry soil.

THERMAL CONDUCTIVITY TEST RESULTS

Project Number 2123 014 Date 03/24/21			10/10		PMAL CONDUCT						
Sample Identification Fix	Project Nur	nher	21 23 01/	INER	RIVIAL CONDUCT	IVIII -	ASTWIL	19334	Date	03/24/21	
Name											
Tare No. AD-OL Diam of Sample, in 2.892 More M				AND (SC)						<u> </u>	
Wet Weight + Tare, g 159.57 Height of Sample, in. 5.676 Porosity, % 32.10		Water (Content				Weight	Volume F	Relationship		
Dry Weight of Tare, g 140,26 Specific Cravity (est) 2.70 Saturation, % 92.10 Weight of Tare, g 30.08 Sample Weight, gm 1020,316 Well will Weight, pd 130,90 Water Content, % 17.50 Sample Mera, in" 6.17 Dry Unit Weight, pd 111.40 Dry Unit Weight											
Weight of Tare, g 30.08 Sample Weight, gm											
Manufacture											
Manufacturer Decagon Calibration Verification SE2043/03683 Calibration Model No. KD2 Pro CAS No. Std - W/m-K Temp C Rdg - W/m-K Pass/Fail Factor, 0 Serial Number KP126 None O.933 Test Method and Probe Thermal Probe Decagon TR-1 Q = FR/L, W/m 4.690 Slope, heating phase O.15 Time (min) 5 Current, L Amps O.95 Slope, cooling phase O.16 Time (min) 5 Time Temp C Current, L Amps O.95 Slope, cooling phase O.16 Time (min) 5 Time Temp, T Time Temp, T (sec) (K) (sec) (sec) (k) (sec)											
Manufacturer Decagon Calibration Verification SE2043/03683 Calibratic Calibration Secondary Calibration Secondary Calibratic		vvalei	Content, 70		•		d Calibr	_	Dry Offi	t weight, por	111.40
Model No. KD2 Pro CAS No. Sid - W/m-K Temp C Regs-Fall Facel No. Probe C. Pass	N	lanufacturer	Decagon	I Equi	•				03683		Calibratio
Thermal Probe		Model No.		CAS No.						Pass/Fail	Factor, C
Thermal Probe Decagon TR-1 Q = Roll, W/m 4.690 Slope, locating phase 0.15	Se	rial Number					20.4				
Length L, meters										ctivity Test R	
Pushed/Pre-drilled Pushed Time (min) 5					$Q = i^2 R/I$	L, W/m	4.690				0.15
Time (min) 5 Test Measurements Heating Phase Elapsed Time (K) (sec) (K) (sec) (K) 5.0 294.05 155.0 294.04 10.0 294.19 160.0 293.91 15.0 294.36 180.0 293.85 20.0 294.30 1770.0 293.80 25.0 294.34 175.0 293.77 30.0 294.39 185.0 293.75 35.0 294.41 190.0 293.71 40.0 294.41 190.0 293.71 60.0 294.44 200.0 293.68 55.0 294.46 205.0 293.67 60.0 294.47 210.0 293.66 55.0 294.48 215.0 293.65 70.0 294.49 220.0 293.64 75.0 294.55 235.0 293.64 75.0 294.55 235.0 293.64 75.0 294.56 260.0 293.65 100.0 294.57 270.0 293.60 110.0 294.58 280.0 293.61 110.0 294.58 280.0 293.59 125.0 294.57 275.0 293.59 125.0 294.59 295.0 293.58 135.0 294.59 285.0 293.58 135.0 294.59 285.0 293.58 140.0 294.59 290.0 293.58 140.0 294.59 290.0 293.58 145.0 294.59 290.0 293.58 145.0 294.59 290.0 293.58 145.0 294.59 290.0 293.58 145.0 294.59 295.0 293.58 150.0 294.60 300.0 293.58 150.0 294.60 300.0 293.58 150.0 294.60 300.0 293.58 150.0 294.60 300.0 293.58 150.0 294.60 300.0 293.58 150.0 294.60 300.0 293.58 150.0 294.60 300.0 293.58 150.0 294.60 300.0 293.58 150.0 294.60 300.0 293.58 150.0 294.60 300.0 293.58 150.0 294.60 300.0 293.58 150.0 294.60 300.0 293.58 150.0 294.60 300.0 293.58 150.0 294.60 300.0 293.58 150.0 294.60 300.0 293.58 150.0 294.60 300.0 293.58 150.0 294.60 300.0 293.58 150.0 294.60 300.0 293.58					Current, I	, Amps	0.095				
Heating Phase	Pushe				Resistance, R,	Ohms	52.08		•	•	
Heating Phase		Time (min)		5				Thermal	Conductivit	y, W/m-K	2.22
Elapsed Time Temp., T Sime Signer Time (sec) (K) (Sec) (Test Meas	surements		J			Heating I	Data		
Elapsed Time (K) (sec) (K) (sec) (K) (sec) (K) (sec) (K) (sec) (sec) (K) (sec) (k) (sec) (sec) (k) (sec) (Heating	Phase	Cooling	g Phase	204.65						
(sec) (K) (sec) (K) (sec) (K) (5.0 294.04 10.0 294.19 160.0 293.91 15.0 294.25 165.0 293.85 20.0 294.30 170.0 293.80 25.0 294.34 175.0 293.77 30.0 294.36 180.0 293.75 35.0 294.41 190.0 293.71 45.0 294.41 190.0 293.70 50.0 294.44 200.0 293.66 65.0 294.47 210.0 293.66 65.0 294.48 215.0 293.66 65.0 294.49 220.0 293.64 75.0 294.55 225.0 293.64 75.0 294.55 225.0 293.61 100.0 294.54 245.0 293.61 100.0 294.54 245.0 293.61 105.0 294.56 260.0 293.61 105.0 294.56 260.0 293.69 110.0 294.56 260.0 293.69 110.0 294.57 270.0 293.59 125.0 294.57 270.0 293.59 125.0 294.57 270.0 293.59 120.0 294.58 280.0 293.59 120.0 294.59 290.0 293.58 135.0 294.59 295.0 293.58 140.0 294.59 290.0 293.58 140.0 294.59 290.0 293.58 140.0 294.59 290.0 293.58 140.0 294.59 290.0 293.58 140.0 294.59 290.0 293.58 140.0 294.59 290.0 293.58 140.0 294.59 290.0 293.58 150.0 294.60 300.0 293.57 Checked ByleEH	Elapsed		Elapsed		294.65 -						
(sec) (K) (sec) (K) 5.0 294.05 155.0 294.04 10.0 294.19 160.0 293.91 15.0 294.25 165.0 293.85 20.0 294.30 170.0 293.80 25.0 294.34 175.0 293.77 30.0 294.36 180.0 293.73 35.0 294.39 185.0 293.73 40.0 294.41 190.0 293.71 45.0 294.43 195.0 293.70 50.0 294.44 200.0 293.66 65.0 294.46 205.0 293.66 65.0 294.48 215.0 293.65 70.0 294.49 220.0 293.64 75.0 294.50 225.0 293.64 75.0 294.51 230.0 293.63 85.0 294.52 235.0 293.64 100.0 294.54 245.0 293.61 100.0 294.55 255.0 293.61 100.0 294.56 260.0 293.61 105.0 294.56 260.0 293.61 105.0 294.57 270.0 293.59 125.0 294.57 270.0 293.59 125.0 294.57 270.0 293.59 120.0 294.59 290.0 293.58 130.0 294.59 290.0 293.58 140.0 294.59 290.0 293.58 140.0 294.59 290.0 293.58 140.0 294.59 290.0 293.58 140.0 294.60 300.0 293.57 Calculated BV PK Checked By IEEH	Time	Temp., T	Time	Temp., T	204.50						
5.0	(sec)	(K)	(sec)	(K)	294.60 -						
15.0	5.0	294.05	155.0		⊋						
15.0	10.0	294.19	160.0	293.91	294.55						
30.0	15.0	294.25	165.0	293.85	ure,						
30.0		294.30	170.0	293.80	294.50 -						
30.0		294.34	175.0	293.77	8 204 45						
35.0 294.39 185.0 293.73 40.0 294.41 190.0 293.71 45.0 294.43 195.0 293.70 50.0 294.44 200.0 293.68 55.0 294.46 205.0 293.67 60.0 294.47 210.0 293.66 65.0 294.48 215.0 293.65 70.0 294.59 295.0 293.64 80.0 294.51 230.0 293.64 80.0 294.51 230.0 293.64 80.0 294.52 235.0 293.64 100.0 294.53 240.0 293.62 95.0 294.54 245.0 293.61 100.0 294.55 255.0 293.60 110.0 294.56 260.0 293.60 110.0 294.56 260.0 293.60 115.0 294.56 260.0 293.59 125.0 294.57 270.0 293.59 125.0 294.58 280.0 293.58 135.0 294.59 295.0 293.58 140.0 294.59 290.0 293.58 145.0 294.59 295.0 293.58 145.0 294.59 295.0 293.58 150.0 294.69 295.0 293.58 150.0 294.69 295.0 293.57 Calculated By PK Checked By EEH			180.0					/			
40.0 294.41 190.0 293.71 45.0 294.43 195.0 293.70 50.0 294.44 200.0 293.68 55.0 294.46 205.0 293.67 60.0 294.47 210.0 293.66 65.0 294.48 215.0 293.65 70.0 294.49 220.0 293.64 80.0 294.51 230.0 293.63 85.0 294.52 235.0 293.64 80.0 294.53 240.0 293.62 90.0 294.53 240.0 293.61 100.0 294.54 250.0 293.61 100.0 294.55 255.0 293.60 110.0 294.56 260.0 293.60 110.0 294.56 260.0 293.60 110.0 294.56 260.0 293.69 120.0 294.57 270.0 293.59 125.0 294.57 275.0 293.59 125.0 294.58 280.0 293.58 135.0 294.59 295.0 293.58 140.0 294.59 290.0 293.58 145.0 294.59 295.0 293.58 145.0 294.59 295.0 293.58 145.0 294.59 295.0 293.58 150.0 294.69 295.0 293.58 150.0 294.69 295.0 293.58 150.0 294.69 295.0 293.58 150.0 294.69 295.0 293.58 150.0 294.69 295.0 293.58 150.0 294.69 295.0 293.58 150.0 294.69 295.0 293.58 150.0 294.69 295.0 293.58 150.0 294.69 295.0 293.58 150.0 294.69 295.0 293.58 150.0 294.69 295.0 293.58 150.0 294.69 295.0 293.58 150.0 294.69 295.0 293.58 150.0 294.69 295.0 293.58 150.0 294.69 295.0 293.58 150.0 294.69 295.0 293.58 150.0 294.69 295.0 293.58 150.0 294.69 295.0 293.58 150.0 294.69 295.0 293.58		294.39	185.0	293.73	204.40						
45.0 294.43 195.0 293.70 50.0 294.44 200.0 293.68 55.0 294.46 205.0 293.67 60.0 294.47 210.0 293.66 65.0 294.48 215.0 293.65 70.0 294.49 220.0 293.64 75.0 294.50 225.0 293.64 80.0 294.51 230.0 293.62 90.0 294.53 240.0 293.62 90.0 294.54 250.0 293.61 105.0 294.54 250.0 293.61 105.0 294.56 260.0 293.60 110.0 294.56 265.0 293.59 120.0 294.57 270.0 293.59 125.0 294.57 275.0 293.59 130.0 294.58 280.0 293.58 135.0 294.59 295.0 293.58 140.0 294.59 290.0 293.58 145.0 294.60 300.0 293.57 Calculated By PK Checked By EEH			190.0	293.71			f				
50.0 294.44 200.0 293.68 55.0 294.46 205.0 293.67 60.0 294.47 210.0 293.66 65.0 294.48 215.0 293.65 70.0 294.49 220.0 293.64 75.0 294.50 225.0 293.64 80.0 294.51 230.0 293.63 85.0 294.52 235.0 293.62 90.0 294.54 245.0 293.61 100.0 294.54 250.0 293.61 100.0 294.55 255.0 293.60 110.0 294.56 265.0 293.60 115.0 294.56 265.0 293.59 125.0 294.57 275.0 293.59 125.0 294.58 280.0 293.58 135.0 294.59 285.0 293.58 140.0 294.59 295.0 293.58 140.0 294.59 295.0 293.58 150.0 294.60 300.0 293.57 Calculated By PK Checked By EEH		294.43	195.0	293.70	29/135 -	•	4				
S5.0 294.46 205.0 293.67 60.0 294.47 210.0 293.66		294.44	200.0	293.68		.0		4.0	5.	0	6.0
60.0 294.47 210.0 293.66 65.0 294.48 215.0 293.65 70.0 294.49 220.0 293.64 75.0 294.50 225.0 293.64 80.0 294.51 230.0 293.63 85.0 294.52 235.0 293.62 90.0 294.53 240.0 293.62 95.0 294.54 245.0 293.61 100.0 294.54 250.0 293.61 105.0 294.55 255.0 293.60 110.0 294.56 260.0 293.60 115.0 294.57 270.0 293.59 120.0 294.57 275.0 293.59 125.0 294.57 275.0 293.58 135.0 294.59 285.0 293.58 135.0 294.59 285.0 293.58 140.0 294.59 290.0 293.58 150.0 294.60 300.0 293.57 Calculated By PK Checked By EEH			205.0		1						
65.0 294.48 215.0 293.65 70.0 294.49 220.0 293.64 75.0 294.50 225.0 293.64 80.0 294.51 230.0 293.62 90.0 294.53 240.0 293.62 95.0 294.54 245.0 293.61 100.0 294.55 255.0 293.60 115.0 294.56 260.0 293.59 120.0 294.57 270.0 293.59 125.0 294.57 275.0 293.59 130.0 294.58 280.0 293.58 135.0 294.59 295.0 293.58 140.0 294.59 295.0 293.58 145.0 294.60 300.0 293.57 Calculated By PK Checked By EEH		294.47			1				(-7		
70.0 294.49 220.0 293.64 75.0 294.50 225.0 293.64 80.0 294.51 230.0 293.62 90.0 294.53 240.0 293.62 95.0 294.54 245.0 293.61 100.0 294.55 255.0 293.60 110.0 294.56 260.0 293.60 115.0 294.57 270.0 293.59 125.0 294.57 275.0 293.59 130.0 294.58 280.0 293.58 135.0 294.59 285.0 293.58 140.0 294.59 290.0 293.58 150.0 294.60 300.0 293.57 Calculated By PK Checked By EEH		294.48			1			Cooling I	Data		
75.0								occining i	Julu		
80.0 294.51 230.0 293.63 85.0 294.52 235.0 293.62 90.0 294.53 240.0 293.62 95.0 294.54 245.0 293.61 100.0 294.54 250.0 293.61 105.0 294.55 255.0 293.60 110.0 294.56 260.0 293.59 120.0 294.57 275.0 293.59 125.0 294.57 275.0 293.59 130.0 294.58 280.0 293.58 135.0 294.59 285.0 293.58 140.0 294.59 295.0 293.58 145.0 294.59 295.0 293.58 150.0 294.60 300.0 293.57 Calculated By PK Checked By EEH					293.76 -						
85.0					293.74 -						
90.0 294.53 240.0 293.62 95.0 294.54 245.0 293.61 100.0 294.54 250.0 293.61 105.0 294.55 255.0 293.60 110.0 294.56 260.0 293.59 120.0 294.57 270.0 293.59 125.0 294.57 275.0 293.59 130.0 294.58 280.0 293.58 135.0 294.59 285.0 293.58 140.0 294.59 295.0 293.58 150.0 294.60 300.0 293.57 Calculated By PK Checked By EEH											
95.0										•	
100.0 294.54 250.0 293.61 105.0 294.55 255.0 293.60 110.0 294.56 260.0 293.59 120.0 294.57 270.0 293.59 125.0 294.57 275.0 293.59 130.0 294.58 280.0 293.58 135.0 294.59 285.0 293.58 140.0 294.59 295.0 293.58 150.0 294.60 300.0 293.57 Calculated By PK Checked By EEH					≥ ^{293.70} -					1	
120.0 294.57 270.0 293.59 125.0 294.57 275.0 293.59 130.0 294.58 280.0 293.58 135.0 294.59 285.0 293.58 140.0 294.59 290.0 293.58 145.0 294.59 295.0 293.58 150.0 294.60 300.0 293.57 Calculated By PK Checked By EEH					⊢ 293.68 -					/	
120.0 294.57 270.0 293.59 125.0 294.57 275.0 293.59 130.0 294.58 280.0 293.58 135.0 294.59 285.0 293.58 140.0 294.59 290.0 293.58 145.0 294.59 295.0 293.58 150.0 294.60 300.0 293.57 Calculated By PK Checked By EEH					293.66 -				1		
120.0 294.57 270.0 293.59 125.0 294.57 275.0 293.59 130.0 294.58 280.0 293.58 135.0 294.59 285.0 293.58 140.0 294.59 290.0 293.58 145.0 294.59 295.0 293.58 150.0 294.60 300.0 293.57 Calculated By PK Checked By EEH					e 303.64				1		
120.0 294.57 270.0 293.59 125.0 294.57 275.0 293.59 130.0 294.58 280.0 293.58 135.0 294.59 285.0 293.58 140.0 294.59 290.0 293.58 145.0 294.59 295.0 293.58 150.0 294.60 300.0 293.57 Calculated By PK Checked By EEH					w _a 293.04 -				1		
125.0 294.57 275.0 293.59 130.0 294.58 280.0 293.58 135.0 294.59 285.0 293.58 140.0 294.59 290.0 293.58 145.0 294.59 295.0 293.58 150.0 294.60 300.0 293.57 Calculated By PK Checked By EEH					⊢ 293.62 -				1		
130.0 294.58 280.0 293.58 135.0 294.59 285.0 293.58 140.0 294.59 290.0 293.58 145.0 294.59 295.0 293.58 150.0 294.60 300.0 293.57 Calculated By PK Checked By EEH					293.60 -						
135.0 294.59 285.0 293.58 140.0 294.59 290.0 293.58 145.0 294.59 295.0 293.58 150.0 294.60 300.0 293.57 Calculated By PK Checked By EEH					293.58 -						
140.0 294.59 290.0 293.58 145.0 294.59 295.0 293.58 150.0 294.60 300.0 293.57 Calculated By PK Checked By EEH											
145.0 294.59 295.0 293.58 In(t/(t-t1)) 150.0 294.60 300.0 293.57 Calculated By PK Checked By EEH						.0	0.5		1.0	1.5	2 N
150.0 294.60 300.0 293.57 Calculated By PK Checked By EEH					·		0.5	In		1.5	2.0
Calculated By PK Checked By EEH					-			***	(v/ (t-t±//		
Calculated By PK				293.57	Ot-	kod D. I	rrı.				
	C				Cnec	Ven RA	03/25/21				

			THER	MAL CONDUCT	IVITY -	ASTM D	5334			
Project Nur	nber	21.23.014	ITIEN	MAL CONDUCT		AO I IVI D	3334	Date	e 02/26/21	
Sample Ide	ntification	TB-5, 4-6						Technicia		
Soil Classif		Sandy Lear	n Clay (CL)						•	
	Water (Content				Weight/		Relationship		
	\Mot \Moia	Tare No. ht + Tare, g	196 132.2	Diam. of Sample Height of Sample			2.975 5.125		Void Ratio Porosity, %	0.78 43.90
		ht + Tare, g	111.91	Specific Gravity			2.70	5	Saturation, %	86.70
		nt of Tare, g		Sample Weight, gm			1107.74		t Weight, pcf	118.40
	Water	Content, %	25.10	Sample Area, in			6.95	Dry Uni	t Weight, pcf	94.60
		_	Equi	pment Identifica						
IV.	lanufacturer Model No.	Decagon KD2 Pro	CAS No.	Calibrat Std - W/m-		tication - Temp C	SE2043/0	- W/m-K	Pass/Fail	Calibration Factor, C
Se	rial Number	KP1296	None	0.933	r\	20.0		1.021	Pass	0.914
			ethod and F						ctivity Test F	
Th	ermal Probe	Decago	on TR-1	Q =i ² R/	L, W/m	4.810	Slope, he	eating phase		0.23
Lengt	h, L, meters	0	.1	Current, I	, Amps	0.096	Slope, co	oling phase		0.26
Pushe	d/Pre-drilled	Pus	shed	Resistance, R	, Ohms	51.98	Average	Slope, heatir	ng & cooling	0.25
	Time (min)	;	5				Thermal	Conductivit	ty, W/m-K	1.42
	Test Meas	urements					Heating I	Data		
Heating	g Phase	Cooling	g Phase				•			
Elapsed		Elapsed		295.45						
Time	Temp., T	Time	Temp., T	295.40						
(sec)	(K)	(sec)	(K)	295.35						
5.0	294.33	155.0	294.62	1 _						
10.0	294.66	160.0	294.32	≥ 295.30 -				<i>y</i>		
15.0	294.82	165.0	294.18	<u>ଅ</u> 295.25			- 1			
20.0	294.92	170.0	294.09	e 295.25 - 295.25 - 295.15 -						
25.0	294.99	175.0	294.03	ed 255.20			/			
	295.04	180.0	293.99	<u>ခ</u> ် 295.15 -		<i></i>				
30.0	295.04	185.0	293.95	295.10		1				
35.0	295.00	190.0	293.93	295.05 -		/				
40.0	295.12	195.0	293.92							
45.0	295.13	200.0	293.89	295.00	.0		4.0		.0	6.0
50.0	295.16	205.0		3	.0		4.0	In(t)	.0	0.0
55.0	295.20		293.86 293.84					III(L)		
60.0		210.0								
65.0	295.24	215.0	293.82				Cooling I	Data		
70.0	295.25	220.0	293.81	294.00						
75.0	295.27	225.0	293.80	2500						
80.0	295.29	230.0	293.79	293.95						
85.0	295.30	235.0	293.78							
90.0	295.31	240.0	293.77	⊋ ^{293.90}						
95.0	295.32	245.0	293.76	= + -						
100.0	295.33	250.0	293.75	Temperature, T (K)				1		
105.0	295.34	255.0	293.74	e 293.80				1		
110.0	295.36	260.0	293.74	<u>ā</u> 233.60						
115.0	295.36	265.0	293.73	≌ 293.75 ·						
120.0	295.37	270.0	293.73							
125.0	295.38	275.0	293.72	293.70						
130.0	295.39	280.0	293.71							
135.0	295.40	285.0	293.71	293.65	0			1.0	4.5	
140.0	295.40	290.0	293.70	l °	.0	0.5		1.0	1.5	2.0
145.0	295.41	295.0	293.70				In	(t/(t-t1))		
150.0	295.42	300.0	293.70							
C	alculated By			Chec	ked By					
	Date			Date	03/01/21					

Sample Identification File 8, 24 Technician PK	Droject Ni	ahor	21.23.014	IHEN	IVIAL C	ONDUC	IVIIY -	AO I IVI D	/ 3 334	D-4	10 105 104	
Sand Y Learn Clay (Ct)												
Water Content				Clav (CL)						1 GCITTICIE	urji ix	
Wet Weight + Tare, g 140.66 Sepedific Grample, in 5.269 Porosity, % 30.				, ,				Weight	/Volume l	Relationshi	р	
Dry Weight + Tare, g 140.66 Specific Gravity (est) 2.70 Saturation, % 16.10 Weight of Tare, g 30.61 Sample Medit, gm 161.87 Wet Unit Weight, pd 31.												0.44
Weight of Tare, g 30.61 Sample Weight, gm												30.50
Marufacturer												101.10 136.40
Residence Decagon Calibration Septiment Calibration Septiment Se					Sample	e Area, in	2					117.20
Model No. KD2 Pro CAS No. Sid - W/m-K Temp C Rdg - W/m-K Pass/Fall Fact			- ,		pment	Identifica	ation an	d Calibra		, , ,	3 /1	
Serial Number KP1296 None 0.933 20.0 1.021 Pass 0.1	M				1							Calibrati
Thermal Probe	C -				S		-K					Factor, 0.914
Thermal Probe Decagon TR-1 Q = 2R/L, W/m 4.760 Slope, heating phase 0.0	36	nai Number			robe	0.933		20.0				
Length L, meters	The	ermal Probe				0 =i ² R/	/I W//m	4 760	_			0.21
Pushed/Pre-drilled Pushed Time (min) 5 Test Measuremonts Heating Phase Cooling Phase Elapsed Time Temp., T Time Temp., T (sec) (K) (soc) (So												0.20
Time (min) 5 Test Measurements Heating Phase Elapsed Time Temp., T Time Temp., T (sec) (K) (sec) (K) 5.0 294.16 155.0 294.21 10.0 294.39 160.0 293.98 15.0 294.59 175.0 293.73 25.0 294.65 185.0 293.75 35.0 294.65 185.0 293.75 35.0 294.66 185.0 293.75 35.0 294.70 195.0 293.67 65.0 294.72 200.0 293.67 65.0 294.78 215.0 293.68 60.0 294.78 215.0 293.68 60.0 294.83 230.0 293.60 60.0 294.83 230.0 293.60 60.0 294.84 235.0 293.63 70.0 294.83 230.0 293.60 85.0 294.84 235.0 293.61 80.0 294.83 240.0 293.55 100.0 294.84 235.0 293.56 115.0 294.99 255.0 293.56 115.0 294.99 255.0 293.56 115.0 294.99 265.0 293.56 115.0 294.91 270.0 293.55 125.0 294.93 280.0 293.55 135.0 294.93 280.0 293.55 135.0 294.93 280.0 293.55 135.0 294.93 285.0 293.54 140.0 294.93 285.0 293.54 140.0 294.94 290.0 293.55 135.0 294.95 300.0 293.53												0.21
Heating Phase					110010	starioo, rv	, Omno	02.00				1.67
Heating Phase		• • •	uromonts	-							 ,	
Elapsed Time Temp., T Time Temp., T (sec) (K) 5.0 294.16 155.0 294.21 10.0 294.39 160.0 293.88 15.0 294.48 165.0 293.89 20.0 294.54 170.0 293.83 25.0 294.62 180.0 293.75 35.0 294.65 185.0 293.73 40.0 294.68 190.0 293.70 45.0 294.72 200.0 293.67 55.0 294.73 205.0 293.66 60.0 294.75 205.0 293.66 60.0 294.76 210.0 293.64 65.0 294.78 215.0 293.63 70.0 294.80 220.0 293.65 88.0 294.81 225.0 293.61 80.0 294.83 230.0 293.60 85.0 294.84 235.0 293.60 85.0 294.84 235.0 293.60 80.0 294.85 240.0 293.56 100.0 294.86 250.0 293.56 100.0 294.87 245.0 293.56 100.0 294.88 250.0 293.56 115.0 294.99 255.0 293.57 110.0 294.99 255.0 293.57 110.0 294.91 270.0 293.55 135.0 294.93 280.0 293.55 135.0 294.93 285.0 293.55 135.0 294.93 285.0 293.55 135.0 294.95 300.0 293.55 135.0 294.95 300.0 293.53 150.0 294.95 300.0 293.53	Hostins			n Dhaec	1				. ioating	- 414		
Time (sec) (K) (sec) (ı i ilaət		y i i ilase	1	295.00						
(sec) (K) (sec) (K) 5.0 294.16 155.0 294.21 10.0 294.39 160.0 293.98 15.0 294.48 165.0 293.89 20.0 294.54 170.0 293.83 25.0 294.59 175.0 293.79 30.0 294.62 180.0 293.73 40.0 294.68 190.0 293.73 40.0 294.68 190.0 293.70 45.0 294.70 195.0 293.69 50.0 294.72 200.0 293.67 55.0 294.75 205.0 293.66 60.0 294.76 210.0 293.69 65.0 294.78 215.0 293.63 70.0 294.80 220.0 293.62 75.0 294.82 225.0 293.61 80.0 294.82 225.0 293.61 80.0 294.82 225.0 293.61 80.0 294.83 230.0 293.60 85.0 294.84 235.0 293.59 99.0 294.85 240.0 293.59 100.0 294.88 250.0 293.56 115.0 294.99 265.0 293.56 115.0 294.91 270.0 293.56 115.0 294.91 270.0 293.55 135.0 294.93 280.0 293.55 135.0 294.94 290.0 293.55 135.0 294.93 280.0 293.55 135.0 294.94 290.0 293.55 135.0 294.95 300.0 293.53 150.0 294.95 300.0 293.53	•	Tomp T	•	Tomp T		204 DE						
5.0		-		-		∠ <i>3</i> 4.33						
10.0	` '				ł							
15.0					<u> </u>	204 95				3		
30.0					e,	294.05				<i>f</i>		
30.0					atuı	294.80			Ĵ			
30.0					per	204 75			1			
35.0					Tem	234.73			1			
40.0 294.68 190.0 293.70 45.0 294.70 195.0 293.69 50.0 294.72 200.0 293.67 55.0 294.75 205.0 293.66 60.0 294.78 215.0 293.63 70.0 294.80 220.0 293.62 75.0 294.82 225.0 293.61 80.0 294.83 230.0 293.60 85.0 294.84 235.0 293.60 90.0 294.85 240.0 293.58 100.0 294.88 250.0 293.58 100.0 294.88 250.0 293.58 105.0 294.89 265.0 293.57 110.0 294.89 260.0 293.56 115.0 294.90 265.0 293.56 120.0 294.91 270.0 293.55 130.0 294.93 280.0 293.55 130.0 294.93 280.0 293.55 130.0 294.94 290.0 293.54 145.0 294.95 295.0 293.53 150.0 294.95 300.0 293.53						294.70						
45.0 294.70 195.0 293.69 50.0 294.72 200.0 293.67 55.0 294.75 205.0 293.66 60.0 294.76 210.0 293.64 65.0 294.78 215.0 293.63 70.0 294.80 220.0 293.62 75.0 294.82 225.0 293.61 80.0 294.83 230.0 293.60 85.0 294.84 235.0 293.60 90.0 294.85 240.0 293.59 95.0 294.87 245.0 293.58 105.0 294.89 255.0 293.57 110.0 294.89 260.0 293.56 115.0 294.91 270.0 293.55 125.0 294.92 275.0 293.55 135.0 294.93 285.0 293.54 140.0 294.94 290.0 293.54 140.0 294.95 295.0 293.53 150.0 294.95 300.0 293.53						294 65						
50.0 294.72 200.0 293.67 55.0 294.75 205.0 293.66 60.0 294.76 210.0 293.64 65.0 294.78 215.0 293.63 70.0 294.80 220.0 293.62 75.0 294.82 225.0 293.61 80.0 294.83 230.0 293.60 95.0 294.84 235.0 293.58 100.0 294.85 240.0 293.58 105.0 294.89 255.0 293.56 115.0 294.99 265.0 293.56 120.0 294.91 270.0 293.55 135.0 294.93 280.0 293.54 140.0 294.94 290.0 293.54 145.0 294.95 295.0 293.53 150.0 294.95 300.0 293.53						254.05						
S5.0 294.75 205.0 293.66 60.0 294.76 210.0 293.64 65.0 294.78 215.0 293.63 70.0 294.80 220.0 293.62 75.0 294.82 225.0 293.61 80.0 294.83 230.0 293.60 85.0 294.84 235.0 293.60 90.0 294.85 240.0 293.58 100.0 294.88 250.0 293.58 105.0 294.89 265.0 293.56 115.0 294.90 265.0 293.55 125.0 294.91 270.0 293.55 135.0 294.93 280.0 293.54 140.0 294.94 290.0 293.54 145.0 294.95 295.0 293.53 150.0 294.95 300.0 293.53 150.0 294.95 293.00 293.53 150.0 294.95 294.95 294.95 294.95 2												
60.0 294.76 210.0 293.64 65.0 294.78 215.0 293.63 70.0 294.80 220.0 293.62 75.0 294.82 225.0 293.61 80.0 294.83 230.0 293.60 85.0 294.84 235.0 293.50 90.0 294.85 240.0 293.59 95.0 294.87 245.0 293.58 100.0 294.89 255.0 293.57 110.0 294.89 260.0 293.56 115.0 294.90 265.0 293.56 120.0 294.91 270.0 293.55 125.0 294.92 275.0 293.55 135.0 294.93 280.0 293.54 140.0 294.94 290.0 293.54 145.0 294.95 295.0 293.53 150.0 294.95 300.0 293.53		-				3	3.0		4.0		5.0	6.0
65.0 294.78 215.0 293.63 70.0 294.80 220.0 293.62 75.0 294.82 225.0 293.61 80.0 294.83 230.0 293.60 85.0 294.84 235.0 293.50 90.0 294.85 240.0 293.59 95.0 294.87 245.0 293.58 100.0 294.88 250.0 293.58 105.0 294.89 260.0 293.56 115.0 294.91 270.0 293.56 120.0 294.91 270.0 293.55 135.0 294.93 280.0 293.54 140.0 294.94 290.0 293.54 145.0 294.95 295.0 293.53 150.0 294.95 300.0 293.53	55.0									In(t)		
70.0 294.80 220.0 293.62 75.0 294.82 225.0 293.61 80.0 294.83 230.0 293.60 85.0 294.84 235.0 293.59 90.0 294.85 240.0 293.59 95.0 294.87 245.0 293.58 100.0 294.88 250.0 293.58 105.0 294.89 255.0 293.57 110.0 294.89 260.0 293.56 115.0 294.90 265.0 293.56 120.0 294.91 270.0 293.55 125.0 294.92 275.0 293.55 130.0 294.93 280.0 293.54 140.0 294.94 290.0 293.54 145.0 294.95 295.0 293.53 150.0 294.95 300.0 293.53	60.0				1							
75.0	65.0								Cooling	Data		
Ro. 0	70.0					202.00						
85.0 294.84 235.0 293.60 90.0 294.85 240.0 293.59 95.0 294.87 245.0 293.58 100.0 294.88 250.0 293.58 105.0 294.89 255.0 293.56 115.0 294.90 265.0 293.56 120.0 294.91 270.0 293.55 125.0 294.92 275.0 293.55 135.0 294.93 280.0 293.54 140.0 294.94 290.0 293.54 145.0 294.95 295.0 293.53 150.0 294.95 300.0 293.53	75.0	294.82				293.80						
90.0 294.85 240.0 293.59 95.0 294.87 245.0 293.58 100.0 294.88 250.0 293.58 105.0 294.89 265.0 293.56 115.0 294.90 265.0 293.56 120.0 294.91 270.0 293.55 125.0 294.92 275.0 293.55 135.0 294.93 280.0 293.55 135.0 294.94 290.0 293.54 140.0 294.94 290.0 293.54 145.0 294.95 295.0 293.53 150.0 294.95 300.0 293.53	80.0	294.83	230.0	293.60								
95.0 294.87 245.0 293.58 100.0 294.88 250.0 293.58 105.0 294.89 255.0 293.57 110.0 294.90 265.0 293.56 120.0 294.91 270.0 293.55 125.0 294.92 275.0 293.55 130.0 294.93 280.0 293.55 135.0 294.94 290.0 293.54 140.0 294.94 290.0 293.54 145.0 294.95 295.0 293.53 150.0 294.95 300.0 293.53	85.0	294.84		293.60		293.75						
120.0 294.91 270.0 293.55 125.0 294.92 275.0 293.55 130.0 294.93 280.0 293.55 135.0 294.93 285.0 293.54 140.0 294.94 290.0 293.54 145.0 294.95 295.0 293.53 150.0 294.95 300.0 293.53	90.0				_							
120.0 294.91 270.0 293.55 125.0 294.92 275.0 293.55 130.0 294.93 280.0 293.55 135.0 294.93 285.0 293.54 140.0 294.94 290.0 293.54 145.0 294.95 295.0 293.53 150.0 294.95 300.0 293.53	95.0				*	293.70						
120.0 294.91 270.0 293.55 125.0 294.92 275.0 293.55 130.0 294.93 280.0 293.55 135.0 294.93 285.0 293.54 140.0 294.94 290.0 293.54 145.0 294.95 295.0 293.53 150.0 294.95 300.0 293.53	100.0	294.88	250.0	293.58	ē.	î L					A	
120.0 294.91 270.0 293.55 125.0 294.92 275.0 293.55 130.0 294.93 280.0 293.55 135.0 294.93 285.0 293.54 140.0 294.94 290.0 293.54 145.0 294.95 295.0 293.53 150.0 294.95 300.0 293.53	105.0	294.89	255.0	293.57	ratu	293.65				A		
120.0 294.91 270.0 293.55 125.0 294.92 275.0 293.55 130.0 294.93 280.0 293.55 135.0 294.93 285.0 293.54 140.0 294.94 290.0 293.54 145.0 294.95 295.0 293.53 150.0 294.95 300.0 293.53	110.0	294.89	260.0	293.56	Joe					1		
120.0 294.91 270.0 293.55 125.0 294.92 275.0 293.55 130.0 294.93 280.0 293.55 135.0 294.93 285.0 293.54 140.0 294.94 290.0 293.54 145.0 294.95 295.0 293.53 150.0 294.95 300.0 293.53	115.0	294.90	265.0	293.56	_ 	293.60						
125.0 294.92 275.0 293.55 130.0 294.93 280.0 293.55 135.0 294.93 285.0 293.54 140.0 294.94 290.0 293.54 145.0 294.95 295.0 293.53 150.0 294.95 300.0 293.53	120.0	294.91	270.0	293.55								
130.0 294.93 280.0 293.55 135.0 294.93 285.0 293.54 140.0 294.94 290.0 293.54 145.0 294.95 295.0 293.53 150.0 294.95 300.0 293.53	125.0	294.92	275.0	293.55		293.55						
135.0 294.93 285.0 293.54 140.0 294.94 290.0 293.54 145.0 294.95 295.0 293.53 150.0 294.95 300.0 293.53		294.93	280.0	293.55								
140.0 294.94 290.0 293.54 0.0 0.5 1.0 1.5 2 145.0 294.95 295.0 293.53 150.0 294.95 300.0 293.53		294.93	285.0	293.54	1	293.50						
145.0 294.95 295.0 293.53 In(t/(t-t1)) 150.0 294.95 300.0 293.53		294.94	290.0	293.54	1	(0.0	0.5			1.5	2.0
150.0 294.95 300.0 293.53					1				In	(t/(t-t1))		
					1							
Calculated By PK Checked By EEH		alculated By		1		Chec	cked By	EEH				

		10/10		ton Pkwy. W, Suite						
Project Nur	nhor	21.23.014	IHER	RMAL CONDUCT	IVIIY -	ASIML	15334	Date	9 03/11/21	
Sample Ide		TB-13/PZ-1	3 4-6					Techniciar		
Soil Classif		LEAN CLAY					!	Toormiolar	11	
	Water (Content	,			Weight	Volume F	Relationship	1	
		Tare No.	5	Diam. of Sample	e, in.		2.846		Void Ratio	0.52
		ht + Tare, g	381.52	Height of Sample			5.732		Porosity, %	34.00
		ht + Tare, g	364.04	Specific Gravity			2.70		Saturation, %	91.00
		nt of Tare, g	263.55	Sample Weight,			1249.4		t Weight, pcf	130.50
	Water	Content, %	17.40	Sample Area, in		-1 0 - 1:1	6.36	Dry Uni	t Weight, pcf	111.20
N/	lanufacturer	Decagon	Equi	pment Identifica			SE2043/	12602	!	Calibratio
IV	Model No.	KD2 Pro	CAS No.	Std - W/m-		Temp C		- W/m-K	Pass/Fail	Factor, C
Se	rial Number	KP1296	None	1.140		20.6		1.052	Pass	1.084
			ethod and F	robe			The	rmal Condu	ctivity Test F	lesults
The	ermal Probe	Decago	on TR-1	$Q = i^2 R/I$	L, W/m	4.240	Slope, he	eating phase		0.18
Lengt	h, L, meters	0	.1	Current, I	, Amps	0.090	Slope, co	ooling phase		0.20
Pushe	d/Pre-drilled	Pus	hed	Resistance, R.	Ohms	52.00	Average	Slope, heatir	ng & cooling	0.19
	Time (min)	ţ	5	,				Conductivit		1.96
	Test Meas	urements					Heating I			
Heating	Phase		g Phase	ſ						
	j i 11036	•	j i iiase	294.80 -						
Elapsed	To T	Elapsed	To T							
Time	Temp., T	Time	Temp., T	294.75 -						
(sec)	(K)	(sec)	(K)	204.70						
5.0	294.11	155.0	294.23	≥ ^{294.70} -				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
10.0	294.28	160.0	294.10	⊢ • 294.65 -						
15.0	294.36	165.0	294.03	1 1 2 3 4 .03			1			
20.0	294.42	170.0	293.98	្នំ 294.60 -			1			
25.0	294.46	175.0	293.95	294.65 - 294.66 - 294.65 - 294.60 - 294.56 - 294.66 - 294			/			
30.0	294.49	180.0	293.92	2 94.55 -						
35.0	294.52	185.0	293.90]		1				
40.0	294.54	190.0	293.88	294.50 -		4				
45.0	294.56	195.0	293.86	294.45 -						
50.0	294.58	200.0	293.84		.0		4.0	5.	0	6.0
55.0	294.60	205.0	293.83	1				In(t)		0.0
60.0	294.62	210.0	293.82	-				(-,		
65.0	294.63	215.0	293.81	İ			Caalina	Data.		
	294.64	220.0					Cooling I	Dala		
70.0			293.80	293.95						
75.0	294.65	225.0	293.79	-						
80.0	294.67	230.0	293.78	293.90						
85.0	294.68	235.0	293.77	233.30						
90.0	294.69	240.0	293.76	S						
95.0	294.70	245.0	293.76	293.85 - T (K) 293.75 -						
100.0	294.70	250.0	293.75	ē,				1		
105.0	294.71	255.0	293.74	를 293.80 -				1		
110.0	294.72	260.0	293.74	J pe						
115.0	294.73	265.0	293.73	293.75						
120.0	294.74	270.0	293.73	1 .						
125.0	294.74	275.0	293.73	293.70						
130.0	294.75	280.0	293.72	1						
	294.76	285.0	293.72	293.65						
135.0	294.76	290.0	293.72		0.0	0.5		1.0	1.5	2.0
140.0				·	-	0.5		(t/(t-t1))	=:=	
145.0	294.77	295.0	293.71	1			111	(·/ (· · · · //		
150.0	294.77	300.0	293.71	<u> </u>		EEU				
C	alculated By			Chec	ked By	EEH 03/12/21				
	Dale	03/11/21		1	Date	US/ 12/21				

ONE-DIMENSIONAL SWELL TEST RESULTS

	% +3			% Gravel			% Sand	d	% I	ines
	/₀ +3		Coar	se Fir	e Coars	e M	edium	Fine	Silt	Clay
	0.0		0.0	0.	0.8		0.0	50.1	28.7	20.4
-						_				
	SIEVE	PERCEN	т	SPEC.*	PASS?			<u>N</u>	Material Description	
	SIZE	FINER	F	PERCENT	(X=NO)		Cl	LAYEY SAND)	
	6"	100.0		·						

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
6"	100.0		
3"	100.0		
3/4"	100.0		
#4	100.0		
#10	99.2		
#20	99.2		
#30	99.2		
#40	99.2		
#60	96.4		
#100	74.7		
#200	49.1		

	Material Description	1							
CLAYEY SAN	CLAYEY SAND								
PL=	Atterberg Limits LL=	PI=							
USCS= SC	Classification AASHTO=	:							
	<u>Remarks</u>								

Source of Sample: TB-1 Depth: 12

Date:

Tolunay-Wong Engineers, Inc. Houston, Texas

Client: Freese and Nichols, Inc.

Project: Collier Raw Water Pump Station and Tunnel

Beaumont, Texas

% +3"	% Gr	avel		% San	d	% Fines	
/ ₆ +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.0	0.0	16.2	45.4	38.4

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
6"	100.0		
3"	100.0		
3/4"	100.0		
#4	100.0		
#10	100.0		
#20	100.0		
#30	100.0		
#40	100.0		
#60	100.0		
#100	99.0		
#200	83.8		

Material Description FAT CLAY with SAND						
PL= 28	Atterberg Limits LL= 71	PI= 43				
USCS= CH	Classification AASHTO=					
	<u>Remarks</u>					

Source of Sample: TB-3 **Depth:** 6

Date:

Tolunay-Wong Engineers, Inc. Houston, Texas

Client: Freese and Nichols, Inc.

Project: Collier Raw Water Pump Station and Tunnel

Beaumont, Texas

0.0		0.0	0.0)	0.0		0.0	55.8	26.4	
OIEVE	DEDOEN	IT CDI	FO *		000	1				_
SIEVE	PERCEN	11 5P	EC.	PA	33 f			<u> </u>	<u>Material Description</u>	
SIZE	FINER	PER	CENT	(X=	:NO)		C	CLAYEY SANI)	
6"	100.0									
3"	100.0									
3/4"	100.0								Attaula avai Livaita	
#4	100.0							01 - 22		
#10	100.0						Г	L- 23	LL- 08	
#20	100.0								Classification	
#30	100.0						US	SCS= SC	AASHTO=	
#40	100.0									
#60	94.0								<u>Remarks</u>	
#100	76.3									
#200	44.2									
	SIEVE SIZE 6" 3" 3/4" #4 #10 #20 #30 #40 #60 #100	SIZE FINER 6" 100.0 3" 100.0 3/4" 100.0 #4 100.0 #20 100.0 #30 100.0 #40 100.0 #60 94.0 #100 76.3	SIEVE PERCENT SPI SIZE FINER PER 6" 100.0 3" 100.0 #4 100.0 #10 100.0 #20 100.0 #30 100.0 #40 100.0 #60 94.0 #100 76.3	SIEVE PERCENT SPEC.* SIZE FINER PERCENT 6" 100.0 3" 100.0 #4 100.0 #10 100.0 #20 100.0 #30 100.0 #40 100.0 #60 94.0 #100 76.3	SIEVE PERCENT SPEC.* PA SIZE FINER PERCENT (X= 6" 100.0 (X= 3" 100.0 (X= #4 100.0 (X= #10 100.0 (X= #20 100.0 (X= #30 100.0 (X= #40 100.0 (X= #40 100.0 (X= #60 94.0 (X=	SIEVE PERCENT SPEC.* PASS? SIZE FINER PERCENT (X=NO) 6" 100.0 (X=NO) 3" 100.0 (X=NO) #4 100.0 (X=NO) #10 100.0 (X=NO) #40 100.0 (X=NO) #40 100.0 (X=NO) #40 100.0 (X=NO) #40 100.0 (X=NO) #60 94.0 (X=NO) #100 76.3 (X=NO)	SIEVE PERCENT SPEC.* PASS? SIZE FINER PERCENT (X=NO) 6" 100.0 (X=NO) 3" 100.0 (X=NO) #4 100.0 (X=NO) #10 100.0 (X=NO) #40 100.0 (X=NO) #40 100.0 (X=NO) #40 100.0 (X=NO) #40 100.0 (X=NO) #60 94.0 (X=NO) #100 76.3 (X=NO)	SIEVE PERCENT SPEC.* PASS? SIZE FINER PERCENT (X=NO) 6" 100.0 (X=NO) 3" 100.0 (X=NO) #4 100.0 (X=NO) #10 100.0 (X=NO) #40 100.0 (X=NO) #40 100.0 (X=NO) #40 100.0 (X=NO) #40 100.0 (X=NO) #60 94.0 (X=NO) #100 76.3 (X=NO)	SIEVE PERCENT SPEC.* PASS? SIZE FINER PERCENT (X=NO) 6" 100.0 CLAYEY SANI 3" 100.0 PL= 23 #10 100.0 PL= 23 #30 100.0 USCS= SC #40 100.0 USCS= SC	SIEVE PERCENT SPEC.* PASS? CLAYEY SAND

Source of Sample: TB-6 Depth: 8

Client: Freese and Nichols, Inc.

Project: Collier Raw Water Pump Station and Tunnel

Beaumont, Texas

Project No: 21.23.014 Figure

17.8

PI= 45

Date:

Tolunay-Wong Engineers, Inc. Houston, Texas

OIVAIN OIZE - IIIII.								
% +3"	% G	ravel	% Sand			% Fines		
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	0.0	0.0	0.3	18.9	35.5	45.3	

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	100.0		
#20	100.0		
#30	99.9		
#40	99.7		
#60	98.0		
#100	92.7		
#200	80.8		

Material Description FAT CLAY with SAND						
PL= 19	Atterberg Limits LL= 59	PI= 40				
USCS= CH	Classification AASHTO=					
	<u>Remarks</u>					

Source of Sample: TB-9 Depth: 4

Date:

Tolunay-Wong Engineers, Inc. Houston, Texas

Client: Freese and Nichols, Inc.

Project: Collier Raw Water Pump Station and Tunnel

Beaumont, Texas

% +3		/o Graver			/o Saliu			/0	rilles
% + 3	'	Coarse	Fine	Coarse	М	edium	Fine	Silt	Clay
0.0		0.0	0.0	0.0		0.0	3.2	66.4	30.4
SIEVE	PERCEN'	T CDI	EC.*	PASS?]				
SIEVE	PERCEN	i SPI	=6.	PASS				Material Description	<u>1</u>
SIZE	FINER	PER	CENT	(X=NO)		F	AT CLAY		
6"	100.0								
3"	100.0								
2/4"	100.0								

SIZE	FINER	PERCENT	(X=NO)
6"	100.0		
3"	100.0		
3/4"	100.0		
#4	100.0		
#10	100.0		
#20	100.0		
#30	100.0		
#40	100.0		
#60	100.0		
#100	100.0		
#200	96.8		

	Material Description		
FAT CLAY			
PL= 23	Atterberg Limits LL= 62	PI= 39	
USCS= CH	Classification AASHTO=		
	<u>Remarks</u>		

Source of Sample: TB-11 Depth: 16

Date:

Tolunay-Wong Engineers, Inc. Houston, Texas

Client: Freese and Nichols, Inc.

Project: Collier Raw Water Pump Station and Tunnel

Beaumont, Texas

GRAIN SIZE - IIIII.								
% +3"	% G	ravel		% San	d	% Fines		
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	0.0	0.0	0.0	6.2	44.5	49 3	

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/4"	100.0		
#4	100.0		
#10	100.0		
#20	100.0		
#30	100.0		
#40	100.0		
#60	100.0		
#100	100.0		
#200	93.8		

FAT CLAY	Material Description	
PL= 17	Atterberg Limits LL= 74	PI= 57
USCS= CH	Classification AASHTO=	
	<u>Remarks</u>	

Source of Sample: TB-12 Depth: 2

Date:

Tolunay-Wong Engineers, Inc. Houston, Texas

Client: Freese and Nichols, Inc.

Project: Collier Raw Water Pump Station and Tunnel

Beaumont, Texas

SOIL ABRASIVITY TEST RESULTS

Client:	Tolunay-Wong Engineers, Inc.
Project Name:	FNI CoBMT Collier Raw Water Pump
Project Location:	Beaumont, TX
GTX #:	313650
Test Date:	5/27/2021
Tested By:	tlm
Checked By:	jsc
Boring ID:	TB-5
Sample ID:	
Depth, ft:	8.5-10

Soil Abrasivity Test

Individual Test Results

Test Number	Soil Abrasivity Test value (mg)
1	31.1
2	30.7
Average	30.9

Sample Classification: High

Soil Abrasivity Test Value Reference Classification Chart

Category	Soil Abrasivity Test value (mg)
Low	≤ 7.0
Medium	7.1 - 21.9
High	≥ 22.0

Notes:

- GTX's Soil Abrasivity Test is based on Nilsen, B., Dahl, F., Holzhäuser J., Raleigh P., New test methodology for estimating the abrasiveness of soils for TBM tunneling. proceeding of RETC conference 2007: 104- 116.
 The trademarked acronyms and terms SATTM and Soil Abrasion TestTM are unique for test results and calculated indices originating from NTNU/SINTEF and can only be obtained by testing samples at their reference laboratory in Trondheim, Norway.
- 2. Abrasion test material was provided to GTX by client. The test material was dried at 30°C for 3-4 days until dry. The Soil Abrasion Test pieces are comprised of cutter ring steel.
- 3. Test was performed at 20 RPM for 1 minute for a total of 20 revolutions.

Client: Tolunay-Wong Engineers, Inc.

Project Name: FNI CoBMT Collier Raw Water Pump

Project Location: Beaumont, TX

GTX #: 313650

Boring ID: TB-5

Sample ID: --
Depth, ft: 8.5-10

Soil Abrasivity Test - Sample As-Received

Notes:

GTX's Soil Abrasivity Test is based on Nilsen, B., Dahl, F., Holzhäuser J., Raleigh P., New test methodology for estimating the abrasiveness of soils for TBM tunneling. proceeding of RETC conference 2007: 104- 116.
 The trademarked acronyms and terms SAT™ and Soil Abrasion Test™ are unique for test results and calculated indices originating from NTNU/SINTEF and can only be obtained by testing samples at their reference laboratory in Trondheim, Norway.

Client:	Tolunay-Wong Engineers, Inc.
Project Name:	FNI CoBMT Collier Raw Water Pump
Project Location:	Beaumont, TX
GTX #:	313650
Test Date:	5/27/2021
Tested By:	tlm
Checked By:	jsc
Boring ID:	TB-5
Sample ID:	
Depth, ft:	8.5-10

Soil Abrasivity Test

Notes: 1. GTX's Soil Abrasivity Test is based on Nilsen, B., Dahl, F., Holzhäuser J., Raleigh P., New test methodology for estimating the abrasiveness of soils for TBM tunneling. proceeding of RETC conference 2007: 104- 116.

The trademarked acronyms and terms SAT™ and Soil Abrasion Test™ are unique for test results and calculated indices originating from NTNU/SINTEF and can only be obtained by testing samples at their reference laboratory in Trondheim, Norway.

Client:	Tolunay-Wong Engineers, Inc.
Project Name:	FNI CoBMT Collier Raw Water Pump
Project Location:	Beaumont, TX
GTX #:	313650
Test Date:	5/27/2021
Tested By:	tlm
Checked By:	jsc
Boring ID:	TB-5
Sample ID:	
Depth, ft:	10.5-12

Soil Abrasivity Test

Individual Test Results

Test Number	Soil Abrasivity Test value (mg)		
1	43.1		
2	42.1		
Average	42.6		

Sample Classification: High

Soil Abrasivity Test Value Reference Classification Chart

Category	Soil Abrasivity Test value (mg)	
Low	≤ 7.0	
Medium	7.1 - 21.9	
High	≥ 22.0	

- 1. GTX's Soil Abrasivity Test is based on Nilsen, B., Dahl, F., Holzhäuser J., Raleigh P., New test methodology for estimating the abrasiveness of soils for TBM tunneling. proceeding of RETC conference 2007: 104- 116.
 The trademarked acronyms and terms SATTM and Soil Abrasion TestTM are unique for test results and calculated indices originating from NTNU/SINTEF and can only be obtained by testing samples at their reference laboratory in Trondheim, Norway.
- 2. Abrasion test material was provided to GTX by client. The test material was dried at 30°C for 3-4 days until dry. The Soil Abrasion Test pieces are comprised of cutter ring steel.
- 3. Test was performed at 20 RPM for 1 minute for a total of 20 revolutions.

Client: Tolunay-Wong Engineers, Inc.

Project Name: FNI CoBMT Collier Raw Water Pump

Project Location: Beaumont, TX GTX #: 313650

Boring ID: TB-5
Sample ID: --Depth, ft: 10.5-12

Soil Abrasivity Test - Sample As-Received

Notes:

GTX's Soil Abrasivity Test is based on Nilsen, B., Dahl, F., Holzhäuser J., Raleigh P., New test methodology for estimating the abrasiveness of soils for TBM tunneling. proceeding of RETC conference 2007: 104- 116.
 The trademarked acronyms and terms SAT[™] and Soil Abrasion Test[™] are unique for test results and calculated indices originating from NTNU/SINTEF and can only be obtained by testing samples at their reference laboratory in Trondheim, Norway.

Client:	Tolunay-Wong Engineers, Inc.
Project Name:	FNI CoBMT Collier Raw Water Pump
Project Location:	Beaumont, TX
GTX #:	313650
Test Date:	5/27/2021
Tested By:	tlm
Checked By:	jsc
Boring ID:	TB-5
Sample ID:	
Depth, ft:	10.5-12

Soil Abrasivity Test

Notes: 1. GTX's Soil Abrasivity Test is based on Nilsen, B., Dahl, F., Holzhäuser J., Raleigh P., New test methodology for estimating the abrasiveness of soils for TBM tunneling. proceeding of RETC conference 2007: 104- 116.

The trademarked acronyms and terms SAT™ and Soil Abrasion Test™ are unique for test results and calculated indices originating from NTNU/SINTEF and can only be obtained by testing samples at their reference laboratory in Trondheim, Norway.

APPENDIX F

ELECTRICAL RESISTIVITY RESULTS

	ERS-1 Electrical Resistivity Survey North-South								
Record Number	Electrode Spacing, a (ft)	Current (amps)	Measured Resistance, R (ohms)	Apparent Resistivity, ρ (ohm-ft)	Apparent Resistivity, ρ (ohm-m)	Apparent Resistivity, ρ (ohm-cm)			
24	2.5	20	6.011	94.41	28.78	2877.68			
23	2.5	20	5.967	93.73	28.57	2857.01			
22	5	50	1.528	47.99	14.63	1462.74			
21	5	50	1.526	47.94	14.61	1461.06			
20	10	50	0.765	48.08	14.66	1465.57			
19	10	50	0.765	48.10	14.66	1465.97			
18	20	50	0.314	39.50	12.04	1203.93			
17	20	50	0.314	39.49	12.04	1203.53			
16	30	100	0.148	27.97	8.52	852.43			
15	30	100	0.149	28.01	8.54	853.81			

- 1. Test procedure performed using Wenner Four-Electrode Method in general accordance with ASTM G 57.
- 2. Calibration measurements of 19.94 ohms (before test) and 19.94 (after test) with 19.93 ohm resistor. Less than 5 percent tolerance.
- 3. Surface covering is dry crushed aggregate.
- 4. Instrument: Advanced Geosciences, Inc. MINISTING Resistivity meter. S/N: S1104289

ERS-1 Electrical Resistivity Survey East-West								
Record Number	Electrode Spacing, a (ft)	Current (amps)	Measured Resistance, R (ohms)	Apparent Resistivity, ρ (ohm-ft)	Apparent Resistivity, ρ (ohm-m)	Apparent Resistivity, ρ (ohm-cm)		
12	2.5	20	6.835	107.36	32.72	3272.33		
11	2.5	20	6.855	107.67	32.82	3281.78		
10	5	20	2.820	88.58	27.00	2699.80		
9	5	20	2.817	88.48	26.97	2696.96		
8	10	20	1.146	71.97	21.94	2193.68		
7	10	20	1.146	72.01	21.95	2194.83		
6	20	20	0.474	59.61	18.17	1817.03		
4	20	20	0.470	59.01	17.99	1798.62		
3	30	20	0.237	44.68	13.62	1361.85		
2	30	20	0.238	44.88	13.68	1367.79		

- 1. Test procedure performed using Wenner Four-Electrode Method in general accordance with ASTM G 57.
- 2. Calibration measurements of 19.93 ohms (before test) and 19.93 (after test) with 19.94 ohm resistor. Less than 5 percent tolerance.
- 3. Surface covering is dry crushed aggregate.
- 4. Instrument: Advanced Geosciences, Inc. MINISTING Resistivity meter. S/N: S1104289

	ERS-03 Electrical Resistivity Survey North-South								
Record Number	Electrode Spacing, a (ft)	Current (amps)	Measured Resistance, R (ohms)	Apparent Resistivity, ρ (ohm-ft)	Apparent Resistivity, ρ (ohm-m)	Apparent Resistivity, ρ (ohm-cm)			
38	2.5	50	33.075	519.54	158.36	15835.58			
37	2.5	50	33.080	519.62	158.38	15838.02			
36	5	50	9.191	288.76	88.01	8801.40			
35	5	50	9.193	288.80	88.03	8802.62			
34	10	50	1.298	81.57	24.86	2486.16			
33	10	50	1.298	81.58	24.86	2486.47			
32	20	50	0.313	39.35	11.99	1199.39			
31	20	50	0.313	39.34	11.99	1199.08			
30	30	50	0.188	35.47	10.81	1081.22			
29	30	50	0.190	35.87	10.93	1093.44			
28	50	50	0.090	28.13	8.57	857.28			
27	50	50	0.089	28.09	8.56	856.18			

- 1. Test procedure performed using Wenner Four-Electrode Method in general accordance with ASTM G 57.
- 2. Calibration measurements of 19.93 ohms (before test) and 19.93 (after test) with 19.93 ohm resistor. Less than 5 percent tolerance.
- 3. Surface covering is dry grass, brush, trees and sand.
- 4. Instrument: Advanced Geosciences, Inc. MINISTING Resistivity meter. S/N: S1104289

ERS-03 Electrical Resistivity Survey									
	East-West								
Record Number	Electrode Spacing, a (ft)	Current (amps)	Measured Resistance, R (ohms)	Apparent Resistivity, ρ (ohm-ft)	Apparent Resistivity, ρ (ohm-m)	Apparent Resistivity, ρ (ohm-cm)			
52	2.5	100	9.731	152.85	46.59	4658.87			
51	2.5	100	9.724	152.74	46.56	4655.52			
50	5	100	3.243	101.87	31.05	3105.00			
49	5	100	3.241	101.82	31.03	3103.47			
48	10	100	1.199	75.30	22.95	2295.27			
47	10	100	1.199	75.31	22.95	2295.36			
46	20	50	0.505	63.45	19.34	1933.90			
45	20	50	0.509	63.97	19.50	1949.78			
44	30	50	0.299	56.45	17.21	1720.66			
43	30	50	0.300	56.51	17.22	1722.36			
42	50	50	0.130	40.93	12.48	1247.58			
41	50	50	0.130	40.97	12.49	1248.61			

- 1. Test procedure performed using Wenner Four-Electrode Method in general accordance with ASTM G 57.
- 2. Calibration measurements of 19.94 ohms (before test) and 19.93 (after test) with 19.93 ohm resistor. Less than 5 percent tolerance.
- 3. Surface covering is dry grass, brush, trees and sand.
- 4. Instrument: Advanced Geosciences, Inc. MINISTING Resistivity meter. S/N: S1104289

	ERS-05 Electrical Resistivity Survey North-South								
Record Number	Electrode Spacing, a (ft)	Current (amps)	Measured Resistance, R (ohms)	Apparent Resistivity, ρ (ohm-ft)	Apparent Resistivity, ρ (ohm-m)	Apparent Resistivity, ρ (ohm-cm)			
67	2.5	50	27.365	429.84	131.02	13101.52			
66	2.5	50	27.360	429.76	130.99	13099.08			
65	5	50	6.409	201.34	61.37	6136.84			
64	5	50	6.409	201.33	61.37	6136.54			
63	10	50	2.259	141.94	43.26	4326.33			
62	10	50	2.259	141.96	43.27	4326.94			
61	20	20	0.580	72.89	22.22	2221.60			
60	20	20	0.582	73.15	22.30	2229.70			
58	30	10	0.340	64.00	19.51	1950.69			
57	30	10	0.343	64.58	19.68	1968.28			
56	50	100	0.119	37.44	11.41	1141.11			
55	50	100	0.119	37.44	11.41	1141.14			

- 1. Test procedure performed using Wenner Four-Electrode Method in general accordance with ASTM G 57.
- 2. Calibration measurements of 19.93 ohms (before test) and 19.93 (after test) with 19.93 ohm resistor. Less than 5 percent tolerance.
- 3. Surface covering is dry sand and trees.
- 4. Instrument: Advanced Geosciences, Inc. MINISTING Resistivity meter. S/N: S1104289

ERS-05 Electrical Resistivity Survey									
	East-West								
Record Number	Electrode Spacing, a (ft)	Current (amps)	Measured Resistance, R (ohms)	Apparent Resistivity, ρ (ohm-ft)	Apparent Resistivity, ρ (ohm-m)	Apparent Resistivity, ρ (ohm-cm)			
81	2.5	100	14.330	225.10	68.61	6861.05			
80	2.5	100	14.332	225.12	68.62	6861.66			
79	5	100	6.878	216.06	65.86	6585.51			
78	5	100	6.879	216.10	65.87	6586.73			
77	10	100	2.648	166.38	50.71	5071.26			
76	10	100	2.648	166.40	50.72	5071.87			
75	20	50	0.959	120.56	36.75	3674.67			
74	20	50	0.960	120.58	36.75	3675.28			
73	30	100	0.313	59.00	17.98	1798.17			
72	30	100	0.313	59.02	17.99	1798.87			
71	50	100	0.110	34.45	10.50	1049.94			
70	50	100	0.110	34.46	10.50	1050.31			

- 1. Test procedure performed using Wenner Four-Electrode Method in general accordance with ASTM G 57.
- 2. Calibration measurements of 19.93 ohms (before test) and 19.93 (after test) with 19.93 ohm resistor. Less than 5 percent tolerance.
- 3. Surface covering is dry grass, trees and sand.
- 4. Instrument: Advanced Geosciences, Inc. MINISTING Resistivity meter. S/N: S1104289

	ERS-07 Electrical Resistivity Survey North-South								
Record Number	Electrode Spacing, a (ft)	Current (amps)	Measured Resistance, R (ohms)	Apparent Resistivity, ρ (ohm-ft)	Apparent Resistivity, ρ (ohm-m)	Apparent Resistivity, ρ (ohm-cm)			
95	2.5	100	17.837	280.19	85.40	8540.19			
94	2.5	100	17.841	280.25	85.42	8542.02			
93	5	50	2.812	88.35	26.93	2692.88			
92	5	50	2.811	88.32	26.92	2691.93			
91	10	10	0.640	40.20	12.25	1225.27			
90	10	10	0.641	40.27	12.27	1227.40			
89	20	100	0.312	39.19	11.95	1194.54			
88	20	100	0.312	39.19	11.94	1194.48			
87	30	100	0.209	39.41	12.01	1201.22			
86	30	100	0.209	39.40	12.01	1200.79			
85	50	50	0.091	28.63	8.73	872.64			
84	50	50	0.091	28.58	8.71	871.15			

- 1. Test procedure performed using Wenner Four-Electrode Method in general accordance with ASTM G 57.
- 2. Calibration measurements of 19.93 ohms (before test) and 19.93 (after test) with 19.93 ohm resistor. Less than 5 percent tolerance.
- 3. Surface covering is perched water with sand, trees and brush.
- 4. Instrument: Advanced Geosciences, Inc. MINISTING Resistivity meter. S/N: S1104289

	ERS-07 Electrical Resistivity Survey									
	East-West									
Record Number	Electrode Spacing, a (ft)	Current (amps)	Measured Resistance, R (ohms)	Apparent Resistivity, ρ (ohm-ft)	Apparent Resistivity, ρ (ohm-m)	Apparent Resistivity, ρ (ohm-cm)				
109	2.5	100	11.952	187.74	57.22	5722.32				
108	2.5	100	11.953	187.76	57.23	5722.92				
107	5	100	3.606	113.30	34.53	3453.38				
106	5	100	3.606	113.27	34.52	3452.47				
105	10	50	0.804	50.54	15.40	1540.34				
104	10	50	0.803	50.46	15.38	1538.02				
103	20	100	0.326	40.97	12.49	1248.80				
102	20	100	0.326	40.97	12.49	1248.80				
101	30	100	0.209	39.47	12.03	1203.08				
100	30	100	0.209	39.43	12.02	1201.77				
99	50	20	0.095	29.89	9.11	911.02				
98	50	20	0.094	29.63	9.03	903.03				

- 1. Test procedure performed using Wenner Four-Electrode Method in general accordance with ASTM G 57.
- 2. Calibration measurements of 19.93 ohms (before test) and 19.93 (after test) with 19.93 ohm resistor. Less than 5 percent tolerance.
- 3. Surface covering is perched water with sand, brush and trees.
- 4. Instrument: Advanced Geosciences, Inc. MINISTING Resistivity meter. S/N: S1104289

	ERS-08 Electrical Resistivity Survey North-South									
Record Number	Electrode Spacing, a (ft)	Current (amps)	Measured Resistance, R (ohms)	Apparent Resistivity, ρ (ohm-ft)	Apparent Resistivity, ρ (ohm-m)	Apparent Resistivity, ρ (ohm-cm)				
138	2.5	50	22.712	356.75	108.74	10873.74				
137	2.5	50	22.696	356.51	108.66	10866.42				
136	5	50	3.482	109.38	33.34	3333.90				
135	5	50	3.445	108.23	32.99	3298.85				
134	10	50	0.639	40.14	12.23	1223.47				
133	10	50	0.642	40.31	12.29	1228.74				
132	20	50	0.203	25.49	7.77	776.78				
131	20	50	0.206	25.86	7.88	788.15				
130	30	50	0.138	26.05	7.94	794.03				
129	30	50	0.139	26.15	7.97	797.05				
128	50	20	0.062	19.52	5.95	594.91				
127	50	20	0.061	19.32	5.89	588.78				

- 1. Test procedure performed using Wenner Four-Electrode Method in general accordance with ASTM G 57.
- 2. Calibration measurements of 19.93 ohms (before test) and 19.93 (after test) with 19.93 ohm resistor. Less than 5 percent tolerance.
- 3. Surface covering is moist with sand, trees and brush.
- 4. Instrument: Advanced Geosciences, Inc. MINISTING Resistivity meter. S/N: S1104289

	ERS-08 Electrical Resistivity Survey									
	East-West									
Record Number	Electrode Spacing, a (ft)	Current (amps)	Measured Resistance, R (ohms)	Apparent Resistivity, ρ (ohm-ft)	Apparent Resistivity, ρ (ohm-m)	Apparent Resistivity, ρ (ohm-cm)				
124	2.5	50	19.312	303.35	92.46	9246.11				
123	2.5	50	19.323	303.52	92.51	9251.29				
122	5	50	6.186	194.34	59.23	5923.48				
121	5	50	6.183	194.23	59.20	5920.13				
119	10	50	0.883	55.46	16.90	1690.36				
118	10	50	0.883	55.45	16.90	1690.18				
117	20	100	0.253	31.75	9.68	967.86				
116	20	100	0.252	31.66	9.65	965.00				
115	30	100	0.171	32.29	9.84	984.23				
114	30	100	0.171	32.26	9.83	983.25				
113	50	100	0.091	28.48	8.68	868.13				
112	50	100	0.091	28.56	8.70	870.39				

- 1. Test procedure performed using Wenner Four-Electrode Method in general accordance with ASTM G 57.
- 2. Calibration measurements of 19.93 ohms (before test) and 19.93 (after test) with 19.93 ohm resistor. Less than 5 percent tolerance.
- 3. Surface covering is moist with sand, brush and trees.
- 4. Instrument: Advanced Geosciences, Inc. MINISTING Resistivity meter. S/N: S1104289

	ERS-10 Electrical Resistivity Survey North-South									
Record Number	Electrode Spacing, a (ft)	Current (amps)	Measured Resistance, R (ohms)	Apparent Resistivity, ρ (ohm-ft)	Apparent Resistivity, ρ (ohm-m)	Apparent Resistivity, ρ (ohm-cm)				
172	2.5	200	4.134	64.94	19.79	1979.46				
171	2.5	200	4.131	64.89	19.78	1977.97				
170	5	50	1.795	56.39	17.19	1718.89				
169	5	50	1.796	56.42	17.20	1719.65				
166	10	100	0.899	56.47	17.21	1721.24				
165	10	100	0.899	56.48	17.21	1721.42				
159	20	100	0.456	57.36	17.48	1748.33				
158	20	100	0.456	57.32	17.47	1746.96				
157	30	100	0.261	49.22	15.00	1500.23				
156	30	100	0.268	50.49	15.39	1539.03				
155	50	100	0.142	44.60	13.59	1359.35				
154	50	100	0.143	44.85	13.67	1367.12				

- 1. Test procedure performed using Wenner Four-Electrode Method in general accordance with ASTM G 57.
- 2. Calibration measurements of 19.93 ohms (before test) and 19.93 (after test) with 19.93 ohm resistor. Less than 5 percent tolerance.
- 3. Surface covering is saturated brush and trees.
- 4. Instrument: Advanced Geosciences, Inc. MINISTING Resistivity meter. S/N: S1104289

	ERS-10 Electrical Resistivity Survey									
	East-West									
Record Number	Electrode Spacing, a (ft)	Current (amps)	Measured Resistance, R (ohms)	Apparent Resistivity, ρ (ohm-ft)	Apparent Resistivity, ρ (ohm-m)	Apparent Resistivity, ρ (ohm-cm)				
152	2.5	100	3.941	61.90	18.87	1886.71				
151	2.5	100	3.937	61.85	18.85	1885.13				
150	5	100	1.722	54.11	16.49	1649.21				
149	5	100	1.717	53.93	16.44	1643.82				
148	10	200	1.039	65.27	19.89	1989.28				
147	10	200	1.038	65.24	19.89	1988.55				
146	20	100	0.528	66.32	20.21	2021.40				
145	20	100	0.527	66.28	20.20	2020.21				
144	30	100	0.343	64.68	19.72	1971.51				
143	30	100	0.336	63.31	19.30	1929.78				
142	50	100	0.144	45.29	13.80	1380.29				
141	50	100	0.145	45.63	13.91	1390.68				

- 1. Test procedure performed using Wenner Four-Electrode Method in general accordance with ASTM G 57.
- 2. Calibration measurements of 19.93 ohms (before test) and 19.93 (after test) with 19.93 ohm resistor. Less than 5 percent tolerance.
- 3. Surface covering is perched water and crushed aggregate.
- 4. Instrument: Advanced Geosciences, Inc. MINISTING Resistivity meter. S/N: S1104289

	ERS-11 Electrical Resistivity Survey North-South									
Record Number	Electrode Spacing, a (ft)	Current (amps)	Measured Resistance, R (ohms)	Apparent Resistivity, ρ (ohm-ft)	Apparent Resistivity, ρ (ohm-m)	Apparent Resistivity, ρ (ohm-cm)				
185	2.5	200	3.886	61.04	18.60	1860.47				
184	2.5	200	3.884	61.01	18.60	1859.68				
183	5	200	1.728	54.29	16.55	1654.82				
182	5	200	1.727	54.27	16.54	1654.00				
181	10	200	0.658	41.36	12.61	1260.74				
180	10	200	0.659	41.41	12.62	1262.30				
179	20	200	0.297	37.37	11.39	1139.01				
178	20	200	0.298	37.40	11.40	1140.07				
177	30	200	0.158	29.81	9.08	908.49				
176	30	200	0.158	29.80	9.08	908.15				
175	50	200	0.081	25.31	7.72	771.51				
174	50	200	0.081	25.31	7.72	771.54				

- 1. Test procedure performed using Wenner Four-Electrode Method in general accordance with ASTM G 57.
- 2. Calibration measurements of 19.93 ohms (before test) and 19.93 (after test) with 19.93 ohm resistor. Less than 5 percent tolerance.
- 3. Surface covering is saturated grass.
- 4. Instrument: Advanced Geosciences, Inc. MINISTING Resistivity meter. S/N: S1104289

	ERS-11 Electrical Resistivity Survey									
	East-West									
Record Number	Electrode Spacing, a (ft)	Current (amps)	Measured Resistance, R (ohms)	Apparent Resistivity, ρ (ohm-ft)	Apparent Resistivity, ρ (ohm-m)	Apparent Resistivity, ρ (ohm-cm)				
200	2.5	200	2.774	43.57	13.28	1327.98				
199	2.5	200	2.769	43.49	13.26	1325.67				
198	5	200	1.367	42.93	13.09	1308.60				
197	5	200	1.364	42.86	13.06	1306.49				
196	10	200	0.614	38.60	11.76	1176.47				
195	10	200	0.614	38.59	11.76	1176.22				
194	20	200	0.296	37.15	11.32	1132.18				
193	20	200	0.296	37.15	11.32	1132.39				
192	30	200	0.174	32.74	9.98	998.04				
191	30	200	0.174	32.75	9.98	998.31				
190	50	200	0.078	24.37	7.43	742.86				
189	50	200	0.078	24.39	7.44	743.53				

- 1. Test procedure performed using Wenner Four-Electrode Method in general accordance with ASTM G 57.
- 2. Calibration measurements of 19.93 ohms (before test) and 19.93 (after test) with 19.93 ohm resistor. Less than 5 percent tolerance.
- 3. Surface covering is saturated grass.
- 4. Instrument: Advanced Geosciences, Inc. MINISTING Resistivity meter. S/N: S1104289

A	P	Ρ	Ε	N	D	IX	G
---	---	---	---	---	---	----	---

CROSS-SECTIONAL SUBSURFACE PROFILES

APPENDIX H

SLUG TEST REPORTS

- 1) Three (3) slug tests were performed at PZ-2 at a depth of 29.5-ft below grade (top of screen) on February 26, 2021.
- 2) PZ-2 water level reading was 12.0-ft below grade prior to slug testing.
- 3) PZ-2 total depth of 40-ft below grade. PZ-2 screened from 30-ft to 40-ft below grade.

Project	Collier Raw Water Pump Station and Tunnel Beaumont, Texas	Tolunay-Wong Engineers, Inc.	Project No. 21.23.014 Report No. 120334
Client	Freese and Nichols, Inc. Pearland, Texas	Slug Test PZ-2 (29.5-ft)	Appendix H Figure 1

- 1) Three (3) slug tests were performed at PZ-2 at a depth of 32.5-ft below grade (upper section of screen) on February 26, 2021.
- 2) PZ-2 water level reading was 12.0-ft below grade prior to slug testing.
 3) PZ-2 total depth of 40-ft below grade. PZ-2 screened from 30-ft to 40-ft below grade.

Project	Collier Raw Water Pump Station and Tunnel Beaumont, Texas	Tolunay-Wong Engineers, Inc.	Project No. 21.23.014 Report No. 120334
Client	Freese and Nichols, Inc. Pearland, Texas	Slug Test PZ-2 (32.5-ft)	Appendix H Figure 2

- 1) Two (2) slug tests were performed at PZ-2 at a depth of 35.5-ft below grade (mid-section of screen) on February 26, 2021.
- 2) PZ-2 water level reading was 12.0-ft below grade prior to slug testing.
- 3) PZ-2 total depth of 40-ft below grade. PZ-2 screened from 30-ft to 40-ft below grade.

Project	Collier Raw Water Pump Station and Tunnel Beaumont, Texas	Tolunay-Wong Engineers, Inc.	Project No. 21.23.014 Report No. 120334
Client	Freese and Nichols, Inc. Pearland, Texas	Slug Test PZ-2 (35.5-ft)	Appendix H Figure 3

- 1) Two (2) slug tests were performed at PZ-7 at a depth of 27-ft below grade (upper section of screen) on March 11, 2021.
- 2) PZ-7 water level reading was 5.8-ft below grade prior to slug testing.
 3) PZ-7 total depth of 35-ft below grade. PZ-7 screened from 25-ft to 35-ft below grade.

Project Collier Raw Water Pump Station and Tunnel Beaumont, Texas	Tolunay-Wong Engineers, Inc.	Project No. 21.23.014 Report No. 120334
Client Freese and Nichols, Inc. Pearland, Texas	Slug Test PZ-7 (27-ft)	Appendix H Figure 4

- 1) Two (2) slug tests were performed at PZ-7 at a depth of 30-ft below grade (mid-section of screen) on March 11, 2021.
- 2) PZ-7 water level reading was 5.8-ft below grade prior to slug testing.
- 3) PZ-7 total depth of 35-ft below grade. PZ-7 screened from 25-ft to 35-ft below grade.

Project Collier Raw Water Pump Station and Tunnel Beaumont, Texas	Tolunay-Wong Engineers, Inc.	Project No. 21.23.014 Report No. 120334
Client Freese and Nichols, Inc. Pearland, Texas	Slug Test PZ-7 (30-ft)	Appendix H Figure 5

- 1) Two (2) slug tests were performed at PZ-7 at a depth of 33-ft below grade (bottom section of screen) on March 11, 2021.
- 2) PZ-7 water level reading was 5.8-ft below grade prior to slug testing.
- 3) PZ-7 total depth of 35-ft below grade. PZ-7 screened from 25-ft to 35-ft below grade.

Project Collier Raw Water Pump Station and Tunnel Beaumont, Texas	Tolunay-Wong Engineers, Inc.	Project No. 21.23.014 Report No. 120334
Client Freese and Nichols, Inc. Pearland, Texas	Slug Test PZ-7 (33-ft)	Appendix H Figure 6

- 1) Two (2) slug tests were performed at PZ-13 at a depth of 42-ft below grade (upper section of screen) on March 11, 2021.
- 2) PZ-13 water level reading was 13.2-ft below grade prior to slug testing.
- 3) PZ-13 total depth of 50-ft below grade. PZ-13 screened from 40-ft to 50-ft below grade.

Project	Collier Raw Water Pump Station and Tunnel Beaumont, Texas	Tolunay-Wong Engineers, Inc.	Project No. 21.23.014 Report No. 120334
Client	Freese and Nichols, Inc. Pearland, Texas	Slug Test PZ-13 (42-ft)	Appendix H Figure 7

- 1) One (1) slug tests was performed at PZ-13 at a depth of 43-ft below grade (mid-section of screen) on March 11, 2021.
- 2) PZ-13 water level reading was13.2-ft below grade prior to slug testing.
- 3) PZ-13 total depth of 50-ft below grade. PZ-13 screened from 40-ft to 50-ft below grade.

Project	llier Raw Water Pump Station and Tunnel	Tolunay-Wong	Project No. 21.23.014 Report No. 120334
Col	Beaumont, Texas	Engineers, Inc.	
Client	Freese and Nichols, Inc. Pearland, Texas	Slug Test PZ-13 (43-ft)	Appendix H Figure 8